Particle acceleration & radiation in the plasma waves

Riken ABB lab. SPDR Yuto Teraki

Ref. [1] Teraki & Takahara, 2014, ApJ, 787, 28

High Energy Astrophysical Objects

AGN jet M87 (HST)

GRB (NASA cartoon)

SN1006 (Chandra)

PWN Crab nebula (Chandra)

Shock front

$$E = \gamma mc^2, \ \gamma \gg 1$$

Particle acceleration

Radiation

Kirk et al. 2009

DSA / Synchrotron & IC?

Magnetic entropy wave Langmuir wave Super luminal EM wave etc..

they affect acceleration and radiation

Outline

1, Basic concepts of radiation mechanisms

- 2, Radiation spectra from electrons in the turbulent field
 - 2-1 magnetic static turbulence
 - 2-2 Langmuir turbulence

- If I have more time,
- 3, Particle acceleration in the strong EM waves

Basics of conventional radiation

Synchrotron radiation

$$\omega_{\rm syn} = \gamma^2 \frac{eB}{mc}$$

Inverse Compton scattering

$$\omega_{\rm IC} = \gamma^2 \omega_{\rm ext}$$

Photon Formation Time (Length)

Ш

For synchrotron typical frequency,

$$\frac{mc^2}{eB}$$

Photon Formation Length

$$\frac{mc}{eB} \equiv \frac{1}{\omega_{\rm st}}$$

Photon Formation Time (PFT)

Photon Formation Time

For non relativistic particle

PFT for the radiation with frequency $\,\omega$

$$T \sim 1/\omega$$

For relativistic particle

$$T \sim \frac{1}{(1 - v/c)\omega} \sim \gamma^2/\omega$$

Dopper boosting is very efficient

jitter radiation $\lambda_B \ll \frac{mc^2}{R}$

PFT
$$T \sim \lambda/v$$
 \longrightarrow $\omega \sim \gamma^2/T \sim \gamma^2 k_B c$

Another interpretation: an analogy of IC

2, Radiation spectra from electrons in the turbulent field

Possible waves

There should be many waves (cf. Matsumoto-san's talk), we now focus on

Magnetic entropy waves generated by Weibel instability

$$\omega_{\mathrm{w}}=0$$
 —— magnetic field only

Langmuir waves generated by two stream instability

$$ec{k}_{
m w} imes ec{E} = 0 \longrightarrow {
m when} \ B_0 = 0 \ ,$$
 Longitudinal electric field only

Turbulent field	Magnetic field	Electric field
Generation	Weibel instability	two stream instability
Mode	transverse	longitudinal
frequency	0	$\omega_{ m p}$: plasma frequency
wavelength	$\sim c/\omega_{ m p}$	$\sim c/\omega_{ m p}$
Synchrotron Photon Formation Length (PFL)	$\frac{mc^2}{e\sigma} \equiv \frac{c}{\omega_{\rm st}} \sim \frac{c}{\omega_{\rm p}}$	
Synchrotron-like Photon Formation Time (PFT)		$\frac{mc}{e\sigma} = \frac{1}{\omega_{\rm st}} \sim \frac{1}{\omega_{\rm p}}$
where $< B^2 > ^{\frac{1}{2}} = \sigma$ $< E^2 > ^{\frac{1}{2}} = \sigma$		

Parametrizing the EM turbulences

Strength parameter

Spatial scale of turbulence
$$\frac{\lambda_{
m tutb}}{mc^2/e\sigma}$$

$$a \equiv \frac{e\sigma}{mc^2 k_{\rm typ}} = \frac{\omega_{\rm st}}{k_{\rm typ}c}$$

Oscillation parameter

$$\frac{\text{Crossing time}}{\text{Oscillation timescale}} : \frac{\lambda_{\text{turb}}/c}{T}$$

$$b \equiv \frac{\omega_{\rm p}}{k_{\rm typ}c}$$

Radiation spectra for magnetic turbulence (b=0)

0 0

For Langmuir turbulence

Description of the turbulent EM fields

Superposition the Fourier modes

$$\vec{B}(\vec{x}) = \sum_{1}^{N} A_n \exp\{i(\vec{k_n} \cdot \vec{x} + \beta_n)\}\hat{\xi}_n$$

$$\vec{E}(\vec{x}) = \sum_{n=1}^{N} A_n \cos(\vec{k_n} \cdot \vec{x} - \omega_p t + \beta_n) \frac{\vec{k_n}}{|\vec{k_n}|}$$

Spatial scale
$$\omega_0 \equiv k_{\mathrm{typ}} c$$

Time scale

$$\omega_{
m p}$$

Mean strength

$$\omega_{\mathrm{st}} \equiv \frac{e\sigma}{mc}$$

$$E^{2}(k)$$
 $B^{2}(k)$
 $k^{-\mu}$
 k_{typ}
 k_{max}

$$A_n^2 = \underline{\sigma}^2 G_n \left[\sum_{n=1}^N G_n \right]^{-1},$$

$$G_n = \frac{4\pi k_n^2 \Delta k_n}{1 + (k_n L_c)^{\alpha}},$$

$$L_{c} = 2\pi/k_{typ}$$

$$\hat{\xi}_{n} = \cos\psi_{n}\hat{e}'_{x} + i\sin\psi_{n}\hat{e}'_{y}$$

$$\rightarrow$$

$$\hat{e}_z' = \frac{\vec{k_n}}{|\vec{k_n}|}$$

Calculation the radiation spectra

Inject electrons with $\gamma_{\rm init}=10$

Solve the EOM
$$\frac{d}{dt}(\gamma m_{\rm e} \vec{v}) = e(\vec{E} + \frac{\vec{v}}{c} \times \vec{B})$$

An example of the trajectory

Use the Lienard-Wiechert potential directly

$$\frac{dW}{d\omega d\Omega} = \frac{e^2}{4\pi c^2} \left| \int_{-\infty}^{\infty} dt' \frac{\vec{n} \times \left[(\vec{n} - \vec{\beta}) \times \dot{\vec{\beta}} \right]}{(1 - \vec{\beta} \cdot \vec{n})^2} \exp\left\{ i\omega(t' - \frac{\vec{n} \cdot \vec{r}(t')}{c}) \right\} \right|^2$$

 \vec{n} Unit vector toward observer

t' Retarded time

For Langmuir turbulences

We want to know instantaneous spectra

Integration time is

 $100 \times$ PFT of the each typical frequency

2-1 Magnetic turbulence

parameters:

$$a \equiv \frac{e\sigma}{mc^2k_{\rm typ}} = \frac{\omega_{\rm st}}{\omega_0}$$

$$b=0$$
 —static

power index of $\mu = 5/3$ strength parameter a=0.5turbulence 10¹ 10⁰

Flat region disappears

10³

10⁴

10²

10¹

10⁻¹

10⁰

power index of $\mu=2/3,\ 5/3,\ 8/3$ a = 1.2Strength parameter turbulence 10³ 10¹ 10⁰ 10⁻¹ 10² 10³ 10⁰ 10¹ 10⁴ $\omega/\omega_{
m g}$ Theoretical spectrum of Synchrotron radiation

Radiation spectra for magnetic turbulence

Electron trajectory for $1 < a < \gamma$

Random moving scale

lowest frequency

2-2 Langmuir turbulence

parameters:

$$a \equiv \frac{e\sigma}{mc^2k_{\rm typ}} = \frac{\omega_{\rm st}}{\omega_0}$$

$$b \equiv \frac{\omega_{\rm p}}{k_{\rm typ}c} = \frac{\omega_{\rm p}}{\omega_0}$$

$$a = \frac{\omega_{\rm st}}{\omega_0} = 10^{-2} \quad b = \frac{\omega_{\rm p}}{\omega_0} = 0.1, 1, 5, 7, 10 \qquad \mu = 5/2$$
 Hump
$$\gamma^2 \omega_{\rm p} = 10^4$$
 b
$$1 \qquad b \qquad 1 \qquad b$$
 Corresponds to high wavenumber modes
$$\omega^{-\frac{5}{2}}$$
 Time variability dominated

Typical frequency
$$\omega_{\mathrm{typ}} = \gamma^2 \omega_{\mathrm{p}}$$

Spectral index

$$F_{\omega} \propto \omega^1$$

$$a = 100, b = 20, 90, 400, 800$$

$$\mu = 5/2$$

Softer than $F_{\omega} \propto \omega^1$

Strength dominated

Typical frequency

$$\omega_{\mathrm{typ}} = \gamma^2 \omega_{\mathrm{st}}, (> \gamma^2 \omega_{\mathrm{p}})$$

Spectral index

$$F_{\omega} \propto \omega^{\frac{1}{3}}$$

parallel v.s. perpendicular

E.O.M.
$$\frac{d\vec{p}}{dt} = m \left[\gamma \frac{d\vec{v}}{dt} + \frac{\gamma^3}{c^2} \left(\vec{v} \cdot \frac{d\vec{v}}{dt} \right) \vec{v} \right]$$

$$\vec{v} \parallel \frac{d\vec{v}}{dt} \longrightarrow \vec{F} = m\gamma^3 \frac{d\vec{v}}{dt}$$

$$\vec{v} \perp \frac{d\vec{v}}{dt} \longrightarrow \vec{F} = m\gamma \frac{d\vec{v}}{dt}$$
 γ^2 times larger

inertia

$$\gamma^2$$
times larger

be accelerated almost perpendicular

$$P=rac{2e^2}{3c^3}\gamma^4\left[\left(rac{dv_\perp}{dt}
ight)^2+\gamma^2\left(rac{dv_\parallel}{dt}
ight)^2
ight] \qquad egin{array}{c} ext{power} \ ag{2} ext{times larger} \ rac{F}{m\gamma} & rac{F}{m\gamma^3} \end{array}
ight.$$

Chart of spectral signatures

Short summary

- 1. For magnetic turbulence, we got the radiation spectra for the intermediate regime between synchrotron and jitter.
- 2. For Langmuir turbulence, we depicted a chart for spectral signatures including newly found signatures.
- 3. Radiation signatures strongly depend on the strength parameter and oscillation parameter when they are around unity.