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High Energy Astrophysical Objects
PWN Crab nebula  (Chandra)GRB（NASA cartoon）

Radiation

electron
Shock front

Particle!
acceleration

E = �mc2, � � 1

436 J.G. Kirk et al.

The detailed fits to all three observed components (intensity, degree of polari-
sation Π and angle of polarisation χ) are quite good. On the other hand, as in the
magnetospheric models, a degree of arbitrariness has been introduced in order to
achieve this. However, one important prediction of the wind model is independent
of these uncertainties. The direction on the sky of the polarisation vector associated
with the d.c. component of emission between the pulses should be determined by
Bϕ alone, i.e., it should lie along the projection onto the sky of the rotation axis of
the neutron star. This prediction is testable, because the morphology of the X-ray
image of the nebula enables a symmetry axis to be identified [96]. In Fig. 16.3 this
measurement was used to orient the model predictions of the angle χ . Thus, the
agreement of the predicted off-pulse values of χ with the measured off-pulse polar-
isation direction is a strong argument in support of the wind model.

16.6 The Termination Shock

Pulsar wind nebulae (PWNe) are observed from the radio to TeV gamma-rays [48].
The spatially integrated spectrum contains information on the distribution in energy
of the radiating particles that are presumably injected at the termination shock. The
best observed example, the Crab Nebula, is shown in Fig. 16.4. Most of the radi-
ation (from the radio up to 100 MeV) is synchrotron emission, and only the peak
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Fig. 16.4 The integrated spectrum of the Crab Nebula. Radio data are taken from [13], infrared
from [53], optical from [117], and X-ray through gamma-ray data (EGRET, COMPTEL and Bep-
poSAX) from [78]. The TeV data points (>1025 Hz) are from H.E.S.S. observations [3]

Kirk et al. 2009
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DSA / Synchrotron & IC?
Shock front

Only Alfven waves?

Plasma instabilities make!
many other waves!

&!
they affect acceleration!

and radiation

No.

Magnetic entropy wave!
Langmuir wave!
Super luminal EM wave!
etc..

electron



Outline

1, Basic concepts of radiation mechanisms

2, Radiation spectra from electrons in the turbulent field 

2-1 magnetic static turbulence !
2-2 Langmuir turbulence

3, Particle acceleration in the strong EM waves
If I have more time,
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Inverse Compton scattering

Basics of conventional radiation
Synchrotron radiation

B �

!syn = �2 eB

mc
!
IC

= �2!
ext
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Photon Formation Time

・For non relativistic particle

! T ⇠ 1/!PFT for the radiation with frequency

・For relativistic particle
T ⇠ 1

(1� v/c)!
⇠ �2/!

Dopper boosting is very efficient



jitter radiation

✓def ⌧
1

�
straight orbit & perturbative acceleration

1/�
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e� e�

Lab. frame

turbulence

electron rest frame

photon

frequency �ktypc�turb =
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ktyp

| ~E| ⇠ | ~B|

�B �
mc2

eB

PFT T � �/v � � �2/T � �2kBc

Another interpretation: an analogy of IC



2, Radiation spectra from electrons!
in the turbulent field 



Possible waves
There should be many waves (cf. Matsumoto-san’s talk),!
 we now focus on 
・Magnetic entropy waves generated by Weibel instability

magnetic field only

・Langmuir waves generated by two stream instability

Longitudinal

when ,
electric field only
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Turbulent field Magnetic field Electric field

Generation Weibel instability two stream instability

Mode transverse longitudinal

frequency 0 !p

wavelength

: plasma frequency
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Strength parameter Oscillation parameter

Spatial scale of turbulence
Synchrotron PFL Oscillation timescale

Crossing time
:
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Parametrizing the EM turbulences
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a � 1

Synchrotron 
radiationjitter radiation

Medvedev 2000!
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Perturbative

For Langmuir turbulence

a

b

1

1
Break the!

perturbative!
treatment

?

?

Fleishman &!
Toptygin 2007

DRL theory
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Superposition the Fourier modes

k

E2(k)

ktyp k
max

Description of the turbulent EM fields

Time scale

Spatial scale

Mean strength
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simplicity, we assume the mildly relativistic shock, and the plasma is subrelativistic, and

ignore the thermal velocity of background plasma in the dispersion relation of Langmuir

waves ω2 = ω2
p + 3/2k2v2

e,th. Thus, we use the propagating Langmuir waves with the same

frequency ωp.

We generate 3D isotropic Langmuir turbulence by using Fourier transform description,

which is slightly modified from the description for magnetic turbulence developed by Gi-

acalone & Jokipii (1999). It is described by superpositions of N Fourier modes, each with

random phase, and direction

E(x) =
N∑

n=1

An cos
{
(kn · x − ωpt + βn)

} kn

|kn|
(1)

Here, An, βn, kn, and ωp are the amplitude, phase, wave vector, frequency of the nth mode,

respectively. The amplitude An of each mode is defined as

A2
n = σ2Gn

[
N∑

n=1

Gn

]−1

, (2)

where the variable σ represents the amplitude of turbulent field. We use the following form

for the power spectrum

Gn =
4πk2

n∆kn

1 + (knLc)α
, (3)

where Lc is the correlation length of the field. Here, ∆kn is chosen such that there is an

equal spacing in logarithmic k-space, over the finite interval kmin ≤ k ≤ kmax and N = 103,

where kmin = 2π/Lc, α = 9/2 and kmax is chosen 103kmin or 10kmin. It has a peak at kmin

and the spectral index is for 3-dimensional isotropic Langmuir turbulence. Then we define

two parameters which characterize radiation spectra. The one is

a ≡ eσ

mc2kmin
=

ωst

ω0
, (4)

where ωst ≡ eσ/mc and ω0 ≡ kminc. We call ωst ”strength omega”, and ω0 ”spatially

omega”. The strength omega ωst accounts for the effect of the field strength to the radiation

spectra. It is from the curvature of orbit and beaming effects for the relativistic particles.

For γ ≫ 1, the local curvature radius of the orbit suffering from perpendicular acceleration

by the electric field is ∼ γmc2/(eσ). The radiation is concentrated in the beaming cone with

an angle ∼ 1/γ, so the searchlight sweeps the observer in the timescale of mc/eσ = 1/ωst.

It is an analogy of the cyclotron frequency in the mechanism of synchrotron radiation. As

for the spatial omega ω0, the electron moves nearly light speed, so the changing rate of force

direction for the electron is 2πc/λ = ω0. The ratio of ωst to ω0, ωst/ω0 = a parametrizes
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An example of the 
trajectory

Use the Lienard-Wiechert potential directly

Unit vector toward observer Retarded time

Calculation the radiation spectra
�init = 10

d

dt
(�me~v) = e( ~E +

~v

c
⇥ ~B)

Inject electrons with
Solve the EOM

Integration time isWe want to know!
instantaneous !
spectra

For !
Langmuir !

turbulences
100⇥ PFT of the 
each typical frequency 



2-1 Magnetic turbulence

a ⌘ e�

mc2ktyp
=

!st

!0

b = 0 ←static

parameters:



a = 0.5strength parameter power index of!
turbulence

µ = 5/3

Flat region disappears

F (�)
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F (!)

Theoretical spectrum of!
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power index of!
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Strength parameter



a ⌧ 1

a < 1 1 < a < �

! !

!
!

!0

!0

!�5/3

!�5/3

!�5/3

!�5/3

!1/2

!1/2

!1/3
e�!

a�1�2!st = !br1

a�2!st = !br2 !br1

!br1 ⇠ !br2 ⇠ !br3

a�3�2!st = !br3

Radiation spectra for magnetic turbulence
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Random moving scale

Synchrotron peak

 break 3

lowest frequency

power law components!
in highest frequency region

c/!st = rL/�

rL

�turb =
2⇡

ktyp

Electron trajectory for  1 < a < �



2-2 Langmuir turbulence

a ⌘ e�

mc2ktyp
=

!st

!0

b ⌘ !p

ktypc
=

!p

!0

parameters:



F!

– 15 –

dW
/d

ω

ω/ω0

Fig. 2.— Radiation spectra for the jitter radiation to DRL regime. The parameters are

a = 10−2 and b = 0.1, 1, 5, 7, 10 from top down in low frequency range. The straight line

shows the power law spectrum with indexes 1 and −5/2
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a = 100, b = 20, 90, 400, 800

– 21 –
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Fig. 3.— Radiation spectra for the DRL to Wiggler-like regime. The parameters are a = 102

and b = 20, 90, 400, 800 from top down. The straight lines show the power law spectrum

with indexes 1/3 and 1.
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Chart of spectral signatures
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Short summary
1. For magnetic turbulence,!
we got the radiation spectra for the intermediate 
regime between synchrotron and jitter.

2. For Langmuir turbulence, !
we depicted a chart for spectral signatures including 
newly found signatures.

3.Radiation signatures strongly depend on the 
strength parameter and oscillation parameter!
when they are around unity.


