

2014/8/25 GRB-SN Workshop@RIKEN

Explosion Mechanism of Core-collapse Supernovae

Tomoya Takiwaki (RIKEN)

Multi-scale & Multi-physics

Various Kinds of CC supernovae

Initial Mass of Progenitor

Fate of the star differs from the character of the progenitor:

- 1. Mass
- 2. Rotation
- 3. Magnetic Field

Two class of CC SNe

Does the shock revive by v-heating?

Spherical symmetric simulations Entropy is visualized.

The answer is NO!

u -heating alone is not enough!

That needs some help!

What helps neutrino heating?

- 1. Convection
- 2. SASI (Standing Accretion Shock Instability)
- 3. Rotation
- 4. Magneto-Rotational Instability

Initial setup: Shock and Entropy

Entropy: T^3/ρ

It's a good measure for the shock.

At the shock, kinetic energy is converted to heat and temperature increases (i.e. entropy also increases.)

Convection

Cooler than the initial state but v heat is active

Negative entropy gradient leads Rayleigh-Taylor instability

(Cold heavy matter is put over Hot light matter)

Rayleigh-Taylor convection transfer energy outward.

Convection

Typical growth time scale~10ms

s11.2(Light Progenitor) Ω =0rad/s

Explode! Convection Dominant

EoS: LS-K220

resolution:

 $384(r)x128(\theta)x256(\phi)$

The finest grid

Neutrino Trasport:

Ray-by-Ray:IDSA

+Leakage

Hydro:

HLLE, 2nd order

Shape of the explosion?

Many hot bubble is observed.
That is evidence of strong convection.

=>

Non-axisymmetric polarization?

s27 Ω =Orad/s

Failed

EoS: LS-K220

resolution: $384(r)x64(\theta)x128(\phi)$

Neutrino Transport : Ray-by-Ray:IDSA +Leakage

Hydro: HLLE, 2nd order

What helps neutrino heating?

- 1. Convection
- SASI
 (Standing Accretion Shock Instability)
- 3. Rotation
- 4. Magneto-Rotational Instability

SASI

Foglizzo's slides

Standing Accretion Shock Instability(SASI)

$$\tau_{\rm SASI} \sim R_{\rm sh}/v_r$$

 $M \uparrow, v_r \uparrow, \tau_{SASI}$ Rapid!

SASI

2D Axi-symmetric

Takiwaki+2012

SASI focus energy at a direction! 0.7-0.6 of increase in total pressure can revive the shock.

SASI in 2D and 3D

Iwakami+08

Shock radius is decomposed by spherical harmonics.

The amplitude become small in 3D.

The shock revival by SASI seems to be difficult.

Gravitational Wave

Convection and SASI can be identified by the observation of GW.

Neutrino

What helps neutrino heating?

- 1. Convection
- SASI
 (Standing Accretion Shock Instability)
- 3. Rotation(Bar mode or spiral-SASI)
- 4. Magneto-Rotational Instability

Rotation

Rapid Rotation => spiral instability

In the rigid ball,

Rotational energy(T)/gravtational energy(W)=14% In SNe case, criteria becomes smaller.

Called low-T/W instability

Rotation

Spiral wave transfer the energy to the outer regon. Finally explosion is found!

Rotation

Strong expansion is found at equatorial plane

(see also Nakamura+14 and Iwakami+14)

The mass of the progenitor and rotation make various type of Explosion(or Non Explosion).

Gravitational wave

What helps neutrino heating?

- 1. Convection
- SASI (Standing Accretion Shock Instability)
- 3. Rotation(Bar mode or spiral-SASI)
- 4. Magneto-Rotational Instability

Magnetic Field

80km

MRI can also play important role! Masada

Masada+ in prep

MRI can make strong turbulence near the neutrino sphere and increase neutrino luminosity.

Summary

- Supernova does not explode only by the ν -heating.
- Various hydrodynamic effect helps the heating. Some of them is promising!
- Observation of GW, neutrino, photon can uncover which effect really occur in the supernovae!

Progenitor dependence and Effect of rotations

Comparison of IDSA & Sn & VE

Sn and VE General relativistic simulation

ecp,aecp,eca,csc,nsc,pap,nes,nbr

Newtonian Gravity

For simple spherical computation, the result is rather consistent.

Does rotation affect the shock revival?

1D=> no shock revival

s11.2 : No

N13 : Yes

s27 : Yes

Viscosity as the hidden parameter

Comparison of the shock radius

Our simulation overestimates the shock radius compared to that of the new version (but new version may underestimate that?).

