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高エネルギー天体
PWNかに星雲  (Chandra)

AGN jet M87 (HST) GRB（NASA想像図）

放射

電子 衝撃波面

粒子加速

E = �mc2, � � 1

436 J.G. Kirk et al.

The detailed fits to all three observed components (intensity, degree of polari-
sation Π and angle of polarisation χ) are quite good. On the other hand, as in the
magnetospheric models, a degree of arbitrariness has been introduced in order to
achieve this. However, one important prediction of the wind model is independent
of these uncertainties. The direction on the sky of the polarisation vector associated
with the d.c. component of emission between the pulses should be determined by
Bϕ alone, i.e., it should lie along the projection onto the sky of the rotation axis of
the neutron star. This prediction is testable, because the morphology of the X-ray
image of the nebula enables a symmetry axis to be identified [96]. In Fig. 16.3 this
measurement was used to orient the model predictions of the angle χ . Thus, the
agreement of the predicted off-pulse values of χ with the measured off-pulse polar-
isation direction is a strong argument in support of the wind model.

16.6 The Termination Shock

Pulsar wind nebulae (PWNe) are observed from the radio to TeV gamma-rays [48].
The spatially integrated spectrum contains information on the distribution in energy
of the radiating particles that are presumably injected at the termination shock. The
best observed example, the Crab Nebula, is shown in Fig. 16.4. Most of the radi-
ation (from the radio up to 100 MeV) is synchrotron emission, and only the peak
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Fig. 16.4 The integrated spectrum of the Crab Nebula. Radio data are taken from [13], infrared
from [53], optical from [117], and X-ray through gamma-ray data (EGRET, COMPTEL and Bep-
poSAX) from [78]. The TeV data points (>1025 Hz) are from H.E.S.S. observations [3]

Kirk et al. 2009
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90 APPENDIX A. BASIC CONCEPTS OF RADIATION FROM A SINGLE PARTICLE

Figure A.3: Synchrotron radiation spectrum from a charged particle with pitch angle α

A.2.1 Photon Formation Time and Photon Formation Length

First, we review a concept of Photon Formation Time (PFT) or Photon Formation Length

(PFL). This concept is introduced by Akhiezer & Shul’ga (1987), to investigate the effect of

the scattering on the radiation in amorphous and crystal media. PFT or PFL is the coherent

time or length of the photon formation. In general, PFT τ is determined implicitly by using

corresponding frequency ω as

ω × (τ − |#x(t + τ)− #x(t)|/c) = 2π. (A.15)

It can be understood as follows. We consider the radiation from a non-relativistic particle, the

timescale T of motion and the frequency of the radiation is correlated as

ω =
2π

T
. (A.16)

シンクロトロン放射のスペクトル

�2 eB

mc

P (!)
erg/s/Hz
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AGNジェット

Uchiyama 2006

2.2. RELATIVISTIC JETS IN ACTIVE GALACTIC NUCLEI 9

Figure 2.4: A composite image of the jet 3C 273. The colors correspond to the wavelength and

also observation instruments. The wavelength of each instrument is as follows: VLA-radio, Spitzer-

infrared, Hubble-optical, and Chandra-x-ray.

is thought to be from hot electrons in the corona by Compton scattering off some of these

photons.

The jets can appear long or short, nearly straight or sharply curved, and relatively smooth

or dominated by knots. The majority of knots move at apparently superluminal velocities

(Jorstad et al. 2001, 2005). From this fact, we know that the jets have relativistic speed.

This large amount of bulk kinetic energy converted to the particle energy and electromagnetic

field at the shock region. The synchrotron radiation and inverse Compton scattering are also

major emission mechanism for the emission regions (knots, hot spots and lobes of AGN jets.

ホットスポット

カットオフから
ずれている。

3C273
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c

!st
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このくらいの
スケールで乱れている。

また、横断時間～電場の変動時間スケール
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強度パラメータ 振動パラメータ
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乱流磁場（ b = 0 ）の場合
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本研究の目的
と　 をパラメータとして
スペクトルの特徴を
明らかにする。
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k�µ

B2(k)

18

フーリエモードの重ね合わせで3D等方乱流を生成

k

E2(k)

ktyp k
max

計算手法１：乱流の生成

特徴的時間スケール

特徴的空間スケール

平均強度

– 5 –

simplicity, we assume the mildly relativistic shock, and the plasma is subrelativistic, and

ignore the thermal velocity of background plasma in the dispersion relation of Langmuir

waves ω2 = ω2
p + 3/2k2v2

e,th. Thus, we use the propagating Langmuir waves with the same

frequency ωp.

We generate 3D isotropic Langmuir turbulence by using Fourier transform description,

which is slightly modified from the description for magnetic turbulence developed by Gi-

acalone & Jokipii (1999). It is described by superpositions of N Fourier modes, each with

random phase, and direction

E(x) =
N∑

n=1

An cos
{
(kn · x − ωpt + βn)

} kn

|kn|
(1)

Here, An, βn, kn, and ωp are the amplitude, phase, wave vector, frequency of the nth mode,

respectively. The amplitude An of each mode is defined as

A2
n = σ2Gn

[
N∑

n=1

Gn

]−1

, (2)

where the variable σ represents the amplitude of turbulent field. We use the following form

for the power spectrum

Gn =
4πk2

n∆kn

1 + (knLc)α
, (3)

where Lc is the correlation length of the field. Here, ∆kn is chosen such that there is an

equal spacing in logarithmic k-space, over the finite interval kmin ≤ k ≤ kmax and N = 103,

where kmin = 2π/Lc, α = 9/2 and kmax is chosen 103kmin or 10kmin. It has a peak at kmin

and the spectral index is for 3-dimensional isotropic Langmuir turbulence. Then we define

two parameters which characterize radiation spectra. The one is

a ≡ eσ

mc2kmin
=

ωst

ω0
, (4)

where ωst ≡ eσ/mc and ω0 ≡ kminc. We call ωst ”strength omega”, and ω0 ”spatially

omega”. The strength omega ωst accounts for the effect of the field strength to the radiation

spectra. It is from the curvature of orbit and beaming effects for the relativistic particles.

For γ $ 1, the local curvature radius of the orbit suffering from perpendicular acceleration

by the electric field is ∼ γmc2/(eσ). The radiation is concentrated in the beaming cone with

an angle ∼ 1/γ, so the searchlight sweeps the observer in the timescale of mc/eσ = 1/ωst.

It is an analogy of the cyclotron frequency in the mechanism of synchrotron radiation. As

for the spatial omega ω0, the electron moves nearly light speed, so the changing rate of force

direction for the electron is 2πc/λ = ω0. The ratio of ωst to ω0, ωst/ω0 = a parametrizes
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ê0z =
~kn
|kn|

ˆ⇠
n

= cos 
n

ê0
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軌道の例

Lienard-Wiechert ポテンシャルからスペクトルを計算

観測者方向単位ベクトル 遅延時間

計算手法２：放射スペクトルの計算
の電子を注入し運動方程式を解く�init = 10

積分時間を
典型的振動数のPFTの
100倍とした。

瞬間的な
放射スペクトル
が知りたい。

d

dt
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Fig. 2.— Radiation spectra for the jitter radiation to DRL regime. The parameters are

a = 10−2 and b = 0.1, 1, 5, 7, 10 from top down in low frequency range. The straight line

shows the power law spectrum with indexes 1 and −5/2
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Fig. 3.— Radiation spectra for the DRL to Wiggler-like regime. The parameters are a = 102

and b = 20, 90, 400, 800 from top down. The straight lines show the power law spectrum

with indexes 1/3 and 1.
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3. SINGLE MODE

In this section, we discuss the interpretation of the features of the radiation spectra we

showed in previous section. First, to clarify the origin of the typical frequency for a > b > 1,

we calculate numerically the radiation spectra from particular configuration. Second, we use

analytical description of the particle orbit to understand the radiative feature from the orbit.

3.1. Numerical

We use particular, very simple configuration of the electric field and injection velocity.

We use only one Langmuir wave which have infinitely large wavelength k = 0, therefore it is

just the oscillating electric field, we set it E = (Ex, 0, 0),

Ex = E0 cos(ωpt). (8)

We inject an electron along the z-axis at t = 0 with Lorentz factor γinit = 10, and solve

the equation of motion. We can calculate radiation spectra for this case using much longer

integrating time than the PFT, because the electron moves perfectly periodically and gets

no kinetic energy after one period of the oscillation. As a consequence, the spectra show

very sharp shape, so we can understand the features clearly.

We characterize the field by using only one parameter of a/b = ωst/ωp, We set ωst = 1,

and change ωp to change the parameter a/b. First, we show the spectrum for a/b = 2×10−3

(Fig 4(a)). We see a sharp peak like a delta function with the frequency is 2γ2ωp. We can

see that the electron’s orbit is purely sine curve, and the observer is always in the beaming

cone from it.

Next we show the spectrum for a/b = 0.02 (Fig 4(b)). We can see the higher harmonics

of γ2ωp. It is from the beaming effect, not from the diverge from the sine orbit (Jackson

1999). Actually, we show the orbit for a/b = 0.02 is almost perfectly sine curve in the next

subsection. The higher harmonics become stand out as a/b become stronger, for a/b = 1

the second harmonics is strong as the fundamental mode (Fig 4(c)). There we change

a/b = 1, 3, 5 as we see in Fig (5), the peak frequency ∼ γ2ωst is not change at all and 2/3

spectrum extend to lower frequency region as a/b become larger. We note that the spectral

index of 2/3 is same value as the Wiggler radiation, and the synchrotron radiation with fixed

angle between velocity and observer. We conclude that the peak frequency is not γ2ωp but

γ2ωst for a > b > 1 from this spectra.

To complete the spectral features in the parameter range of a/b, we show the radiation

spectra for a/b = 500 > γinit (Fig 4(d)). We note again that the peak frequency is ∼ γ2ωst,
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Since the velocity is a periodic function, we can define the mean velocity by β̄ = ωp

2π

∫ 2π/ωp

0 βzdz.

In the limit of α → ∞ the electron motion can be approximated by a harmonic oscillation

to the x direction aside from a constant velocity along the z-axis. As α decreases but it still

much larger than unity, the motion can be approximated by a figure of eight when the mean

motion is subtracted. As α decreases further, the motion becomes increasingly complex. To

get a clear view of the motion, it is convenient to transform to the mean velocity frame at

the next step. The velocity in the mean velocity frame is given by

β′
x = −η

γ̄

sin θ

η
√

α + sin2 θ − β̄
√

γ2
init − 1

β′
z = −

√
γ2

init − 1 − β̄η
√

α + sin2 θ

η
√

α + sin2 θ − β̄
√

γ2
init − 1

(15)

The mean velocity β̄ cannot be represented elementarily in a general form. Then, we take

the parameter α % 1 and approximate the motion hereafter. We note that α % 1 means

γinit % η, therefore η can be much larger than 1 when γinit % 1. We expand the Lorentz

factor and the velocity, and get the mean velocity and the mean Lorentz factor by using the

lowest order than 1/α.

β̄ = βinit(1 − 1

4α
)

γ̄ =
γinit√
1 + η2

2

(16)

For η & 1, γ̄ ∼ γinit, while for η % 1, γ̄ =
√

2α. We note that γ̄ can be much smaller than

γinit for η % 1. Using this approximated velocity, we calculate the maximum Lorentz factor

in the mean velocity frame, to clarify the fact that the radiation signatures depend on η.

γ′
max =

γinit√
1 + η2

2

[√
γ2

init + η2 − βinit(1 − 1

4α
)
√

γ2
init − 1

]
(17)

For η & 1,

γ′
max = 1 +

η2

2
. (18)

The motion in this frame is non-relativistic, therefore the radiation in this frame is dipole

radiation. On the other hand, for η % 1, the maximum Lorentz factor is

γ′
max =

3
√

2

4
η. (19)

Therefore, the motion is relativistic even in this frame and the radiation spectrum consists of

higher harmonics, because β′ approaches 1. It should be noted that for η = 1, the motion in
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the mean velocity frame is mildly relativistic with Lorentz factor γ′
max = 1.02, and β′ = 1/5.

We can see that the transition from non-relativistic harmonic motion to relativistic motion

occurs around η ∼ 1 from this fact.

The trajectory in the mean velocity frame is obtained by integrating the approximated

velocity in the original frame over t and by transforming to the mean velocity frame

x′ =
c√
αωp

cos θ

z′ =

√
β2

initη
2

32(2 + β2
initη

2)

c√
αωp

sin 2θ,
(20)

where θ = ωpt. Basic features of the motion are the same as discussed above in the original

frame. However, the parameter which characterizes the motion is not α but η in this frame.

The trajectory is a straight line for η # 1 and a figure of eight for η ! 1. Next, we discuss

the phase of oscillation of the electron to consider the characteristic radiation frequency in

the mean velocity frame. The phase θ is written by

θ = ωpt = ωpγ̄(t′ +
β̄

c
z′). (21)

The phase depends on not only t′, but also z′. This phase shift from γ̄ωpt′ is not negligible

compared to 2π. It reaches ∼ 1/4 for η → ∞, even if η = 1 it is ∼ 1/12. However, the

fundamental oscillation frequency is determined by the period T = 2π/γ̄ωp as T/2π = γ̄ωp.

Since z′ is a periodic function and z′ = 0 for θ = 2π and θ = 0 as seen in equation (15).

Lastly we note that the phase change rate dθ/dt′ is not constant. Summarizing above, the

motion in the mean velocity frame is a simple non-relativistic harmonic motion for η # 1,

and relativistic motion on the figure of eight trajectory, and the frequency for both case is

γ̄ωp. It should be noted that the velocity is dependent on η and the characteristic radiation

frequency changes with η

Next we show numerically calculated radiation spectra from the electron and their fea-

tures are interpreted in terms of the properties of the orbit. We fix ωst = 1, and change

ωp to change the parameter η. The observer is on the z-direction. We calculate radiation

spectra using much longer integrating time than the PFT, because the electron moves per-

fectly periodically. As a consequence, the spectra show very sharp features, which makes it

easier to understand the relation between spectral features and orbit. First, we show the

spectrum for η = 10−3 (ωp = 103, Fig 8(a)). We see a sharp peak like a delta function at

the frequency 2γ2
initωp = 2 × 105. This is understood in terms of the motion of the electron

in the mean velocity frame. For η # 1, in the mean velocity frame, electron motion is a

simple harmonic motion with the frequency ∼ γ̄ωp and non-relativistic velocity. Therefore,
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Since the velocity is a periodic function, we can define the mean velocity by β̄ = ωp

2π

∫ 2π/ωp

0 βzdz.

In the limit of α → ∞ the electron motion can be approximated by a harmonic oscillation

to the x direction aside from a constant velocity along the z-axis. As α decreases but it still

much larger than unity, the motion can be approximated by a figure of eight when the mean

motion is subtracted. As α decreases further, the motion becomes increasingly complex. To

get a clear view of the motion, it is convenient to transform to the mean velocity frame at

the next step. The velocity in the mean velocity frame is given by

β′
x = −η

γ̄

sin θ

η
√

α + sin2 θ − β̄
√

γ2
init − 1

β′
z = −

√
γ2

init − 1 − β̄η
√

α + sin2 θ

η
√

α + sin2 θ − β̄
√

γ2
init − 1

(15)

The mean velocity β̄ cannot be represented elementarily in a general form. Then, we take

the parameter α % 1 and approximate the motion hereafter. We note that α % 1 means

γinit % η, therefore η can be much larger than 1 when γinit % 1. We expand the Lorentz

factor and the velocity, and get the mean velocity and the mean Lorentz factor by using the

lowest order than 1/α.

β̄ = βinit(1 − 1

4α
)

γ̄ =
γinit√
1 + η2

2

(16)

For η & 1, γ̄ ∼ γinit, while for η % 1, γ̄ =
√

2α. We note that γ̄ can be much smaller than

γinit for η % 1. Using this approximated velocity, we calculate the maximum Lorentz factor

in the mean velocity frame, to clarify the fact that the radiation signatures depend on η.

γ′
max =

γinit√
1 + η2

2

[√
γ2

init + η2 − βinit(1 − 1

4α
)
√

γ2
init − 1

]
(17)

For η & 1,

γ′
max = 1 +

η2

2
. (18)

The motion in this frame is non-relativistic, therefore the radiation in this frame is dipole

radiation. On the other hand, for η % 1, the maximum Lorentz factor is

γ′
max =

3
√

2

4
η. (19)

Therefore, the motion is relativistic even in this frame and the radiation spectrum consists of

higher harmonics, because β′ approaches 1. It should be noted that for η = 1, the motion in
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γ′
max =

3
√

2

4
η. (19)

Therefore, the motion is relativistic even in this frame and the radiation spectrum consists of

higher harmonics, because β′ approaches 1. It should be noted that for η = 1, the motion in

ローレンツ因子

相対論的
非相対論的⌘ ⌧ 1

⌘ � 1

平均静止系での多重極放射を
ドップラーブーストしたものがピーク

⌘ ⌘ a

b
=

eE0

mc!p
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物理的解釈:観測者系
�mc2

eE

mc2

eE

のタイムスケールで
円軌道とする近似が使えると考えられる

1/!st

!st > !p

典型的振動数は

(1� v

c
)

1
mc2

eE
1
c

⇠ �2!st

乱流電場において
この近似が使える妥当性を

考察する。

の状況で
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d~p

dt
= m


�
d~v

dt
+

�3

c2

✓
~v · d~v

dt

◆
~v

�

~v k d~v

dt

~v ? d~v

dt
~F = m�

d~v

dt

~F = m�3 d~v

dt

縦加速と横加速
運動方程式

�2慣性が 倍違う！

つまり等方的乱流ならば主に横に曲がる。

電場でも磁場の場合に近い運動になる。

P =
2e2

3c3
�4

"✓
dv?
dt

◆2

+ �2

✓
dvk
dt

◆2
#

パワーも
�2倍違う。

F

m�3

F

m�
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エネルギー変化と結論

エネルギー 電場

�E = e ~E · ~v�t
�t = 1/!st

シンクロトロン的PFT

つまり � にして1も変わらない

結論：ある時刻 t での� を用いて
典型的振動数は�2!st と書ける。

�E . eEc⇥ mc

eE
= mc2
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スペクトルチャート
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b
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!0
=

=
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F! / !1
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LAEに近づく

DRL WRL

Jitter
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=
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!0

F! / !1/3

F! / !1/2

F! / !1

F! / !0

�2!p
�2!st

�2!0

LAEに近づく

実現可能
性が高い
領域！

DRL WRL

Jitter
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天体への応用
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放射スペクトルの応用例
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α 3
2−

ハードなスペクトルを
説明できる可能性がある。

0
*原理的には　　　　　近傍のみで�2!p

F! / !3 まで可能。

Photon	  index	  は2

放射スペクトルの応用例
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!F!

!

!�µ+1

e�!
!

�p+3
2

AGNジェット

Uchiyama et. al. 2006

Ｈ２

Ｈ１

発見した
スペクトル形状で
説明可能

2.2. RELATIVISTIC JETS IN ACTIVE GALACTIC NUCLEI 9

Figure 2.4: A composite image of the jet 3C 273. The colors correspond to the wavelength and

also observation instruments. The wavelength of each instrument is as follows: VLA-radio, Spitzer-

infrared, Hubble-optical, and Chandra-x-ray.

is thought to be from hot electrons in the corona by Compton scattering off some of these

photons.

The jets can appear long or short, nearly straight or sharply curved, and relatively smooth

or dominated by knots. The majority of knots move at apparently superluminal velocities

(Jorstad et al. 2001, 2005). From this fact, we know that the jets have relativistic speed.

This large amount of bulk kinetic energy converted to the particle energy and electromagnetic

field at the shock region. The synchrotron radiation and inverse Compton scattering are also

major emission mechanism for the emission regions (knots, hot spots and lobes of AGN jets.

3C273 
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まとめ
・ジッター放射とシンクロトロン放射の理論をつなぐ　
スペクトル形状を発見し、その解釈も与えた。

・ラングミュア乱流においては時間変動の効果も
考慮し、新発見のスペクトル形状を含む一般的な
スペクトル形状のレファレンスチャートを作成した。

・高エネルギー天体の観測スペクトルは乱流を
考慮したこれらの理論スペクトルにより

解釈されうる。
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スペクトル指数と
ブレイク振動数
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⌧ = �/c

放射公式

において、被積分関数の位相の中の　　　　　　　　　　　　　　　　は

ブレイク1を少し詳しく。

の時のみ強い放射があり得る。
!⌧(1� ~n· < ~� >) > 1 では位相因子が激しく振動し、

パワーは非常に小さくなる。

において平均化
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!st ⌘
e�

mc

!  �2c

�
max

⇠ a�1�2!
st

|�~�| ⌧ 1

�
max

= c⌧
max

✓1  1

�

✓1

ブレイク1続き

だから、

と近似できる。

ただし とする。

観測者

つまり !br1 = a�1�2!st

� � 1 の時
!⌧

max

2�2

(1 + �2✓2
1

) < 1

典型的な波長�
max

で書いた強い放射が出る条件は
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102 APPENDIX B. DETAILS OF PAST STUDIES

Then the Fourier component !Fω′ specifying the magnitude !wω′ = !Fω′/mγ is found by temporal

Fourier transformation. We write the square of !wω′ as

|!wω′ |2 =
(2π)3

m2γ2V

∫
dq0d!qδ(ω

′ − ω + !k · !v)|!Fq0,"q|2, (B.6)

where V is the source Volume. Next we specify the field as a random static magnetic field as

!Fq0,"q = e2(δαβ − vαvβ/v2)Bα
"q Bβ

"q .

We introduce the second-order correlation tensor of the statistically uniform random magnetic

field as

K(2)
αβ (!r) =

1

V

∫
d!RBα(!R)Bβ(!R + !r), (B.7)

and the |!wω′ | is obtained from Fourier transformed correlation function. Substituting |!wω′| into

equation (B.1) and dividing it by the total duration time T , we get the radiation intensity:

dI

dω
=

e4

m2c3γ2

∫ ∞

1/2γ2

d

(
ω′

ω

)( ω
ω′

)2
(

1− ω

ω′γ2
+

ω2

2ω′γ4

)∫
d!qδ(ω′ + !q · !v)K(!q), (B.8)

where K(!q) = K(2)
αβ (!q)(δαβ − vαvβ/v2). By specifying K(!q), we get the radiation spectrum.

We show the spectral features using equation (B.8). We here consider the isotropic case

K(2)
αβ ∝ (δαβ − qαqβ/q2)f(|!q|) with spectrum of the random magnetic field:

f(|!q|) =
q2

(q2
m + q2)µ/2+2

. (B.9)

It expresses a broken power law distribution with the break frequency of qm, the low frequency

side is B2(k) ∝ k4 and high wavenumber side is B2(k) ∝ k−µ. When µ = 5/3, the magnetic

field is the well known Kolmogorov turbulence. For ω # γ2qmc, the corresponding wavenumber

is much higher than qm. Integrating equation (B.8) with using power spectrum of turbulence

(B.9), one obtains dI/dω ∝ ω−µ. The high frequency component is from the resonance contri-

butions of the modes q = ω′/v. On the other hand, for ω $ γ2qmc, the spectrum consists of

non resonant contribution of the mode qm. The integral of the corresponding part to making

the spectral index in equation (B.8) is
∫

d!qf(|!q|)δ(ω′ + !q!v) =
1

v

∫
dqydqzf(q2

y + q2
z + (ω′/v)2), (B.10)
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y + q2
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!0 =
!

2
(��2 + ✓2)

放射の公式を
の近似を用いて、角度積分を変数変換

依存性
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~v = (v
x

, 0, 0) を仮定し
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where we specify !v = vx. Since we now treat ω′ ! qmc, the f(|!q|) is very weakly dependant on

ω′. Thus, dI/dω ∝ ω0 for the low frequency region than γ2qmc. Summarizing above, except

for the special configuration of !k ‖ !v, the radiation spectrum is Fω ∝ ω0 in lower frequency

region than γ2qmc, and Fω ∝ ω−µ in higher frequency region. He call the treatment above

perturbative Diffusive Synchrotron Radiation theory (DSR).

B.3 Beyond the perturbative DSR theory

The Fleishman’s treatment of DSR theory is appropriate under the approximation that the

magnetic turbulence is static and that the radiating particle is moving rectilinearly. These

are, of course, not general. When these assumptions does not hold, the radiation spectra

are significantly changed as we show as follows and in main part of this thesis. Moreover,

the electric field would also be generated at the shock region, which is demonstrated in PIC

simulations by Dieckmann (2005).

We firstly discuss the break of the approximation of the rectilinear trajectory, which is also

studied in Fleishman 2006. The condition k−1 < R/γ means only that the change of deflection

angle in the passing time of an eddy is smaller than 1/γ. Therefore, when the particle moves

longer scale, the observer may be off the typical beaming cone. As a result, the approximated

formula breaks down for the calculation of lower frequency region. Here we estimate the break

frequency by calculating the cumulative deflection angle by diffusion approximation. The

deflection angle in one deflection is defined as

θ0 = eBl0/γmc2, (B.11)

where l0 is the length of an eddy. We equating cumulative deflection angle θc and 1/γ, and

obtain

θc =
√

Nθ0 =
1

γ
, (B.12)

where N is the number of the deflections. Using the equations (B.11) and (B.12), we estimate

つまり非共鳴の時はこの項は　　によらなくなり!0

結果 F! / !0
となる。

~ktyp を斜めにはじくと考える。ktyp cos ✓ = !0

この　 は✓
~ktyp
~v
と

の
なす角
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�B
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| ~E| ⇠ | ~B|

! ⇠ �2 2⇡

�B
c = �2kc

B2(k) / k�5/3

!br1 F! / !�5/3

高振動数側

磁場の静止系

乱れた磁場

電子の静止系

光子

振動数

磁場の静止系で　　　　　　　　電子の静止系では

トムソン散乱→放射光子の振動数は

放射強度は加速度の２乗、つまり
磁場強度の２乗に比例

より高振動数領域は

磁場のモードの強度：

光子と

見なせる

e�

v ⇠ c

14年3月3日月曜日



a ' 1

a < 1

✓2

P (✓2, t)d✓2 ' 1p
4⇡Dt

exp(� ✓22
4Dt

)d✓2

D =
✓2
0

2⌧
max

では見えなくなる効果が無視できなくなる。 

・運動方向と視線方向の間の角度　　　について拡散近似を用いると、
　時刻   に区間

この間、観測者は見えている
観測者

にいる確率は

と書ける。

における電子の運動

この放射は見えない。

一回の典型的スケールの曲がりを円運動近似し、
曲がり角を　　　拡散係数を

とした。

✓2

✓0

t [✓2, ✓2 + d✓2]
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Lrad

Lrad ! ⇠ �2 2⇡

Lrad
c

�mc2

e�
✓
0

= �
max

N =
L
rad

�
max

✓2 = N✓20円軌道近似

✓2

の距離に対応する振動数は

ブレイク２

一回の曲がりの間走る典型的距離は

であり、曲がる回数Ｎは

　　　　　　　　

となる振動数を見積もると

拡散近似

!br2 = a�2!st
となる。

✓2 = 1/�
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F! / !1/2

F (!) !0

F! / !0

!�5/3

!br1 !

✓22
4Dt

< 1

P (✓, t)d✓ ⇠ 1

4⇡Dt
/ t�1/2

!0

!1/2

放射が見え続ける限りは

ここから時間　　放射が見え続ける電子の数は
　　　に比例することが分かる。
それを振動数に焼き直すとフラックスは

　　より低振動数の放射を
出す運動時間においては

であるから指数関数の部分が１とでき、

見え続ける確率を見積もる
!br2

t
t1/2

F (!)

!

F! / !1/2
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mc

e�

t >
⇡

a!st

!br2 = a�2!st

✓22
4Dt

< 1

D =
✓2
0
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1
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max

✓2
0

=
1

2t

mc
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mc2

e��
max

指数関数部分が１になる条件：　　　

であるから、

つまり であればよい。

であるから、　　　より低振動数を
見る場合はこの条件は満たされる。

を用いて�mc2

e�
✓
0

= �
max

!br2
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! ⇠ �2!p

!0 =
!

2
(��2 + ✓2)

✓ ：放射の方向と速度の方向の間の角度

F! / !1 である理由付近で

：観測者系で見た電子の振動数

the deflection angle θdef is much smaller than 1/γ. In the mean velocity (of radiating electron)

frame, the electron can be regarded as a simple harmonic oscillator

x′ = A sin(k′βct′),

where k′ = γk0 is the wavenumber of the radiation in this frame, and A is a constant. The

radiation from it is the dipole radiation, and the frequency of it is ωdp ! k′c in this frame,

where we approximate β ∼ 1. The emitted energy per unit time into unit solid angle is

dP ′

DΩ′ =
e2c

8π
k′4A2 sin2 Θ, (A.1)

where Θ = &n· &̈x′e is the angle between the emission direction and second derivative of the dipole

moment. We transform the radiation to the observer frame and take a few approximation for

γ # 1, such as β ∼ 1 − 1/2γ2,we get

d3P

dχdkdφ
=

e2cγ4k4
0A

2

2π

[
(1 − χ2) + 4χ sin2 φ

(1 + χ)4

]
δ[k(1 + χ) − 2γ2k0], (A.2)

where χ = (γθ2), δ[cdots] is the Dirac delta function, θ and φ are depicted in Fig ??. ここに
z,x,theta,phiの方向の図を書く。We note that there is a correlation that θ and frequency. We

integrate of φ and χ in the integration range 0 < χ < ηmax, and we get the radiation spectrum:

dP

dν
= P0[ν(1 − 2ν + 2ν2)], (νmin < ν < 1) (A.3)

where P0 is a normalization constant, ν = kc/2γ2k0c is the normalized frequency, and νmin =

1/(1 + χmax. We note that we implicitly assumed θ % 1, so that χmax cannot be much larger

than 1/γ. The peak frequency of this spectrum is ν = 1 (ωmax = 2γ2k0c). The spectrum in

lower frequency region ν % 1 is dP/dν ∝ ν1, while the spectrum shows abrupt cutoff above

the peak. We note that the spectrum shows dP/dν ∝ ν3 in the very narrow frequency range in

slightly lower than peak. The radiation in this frequency range correspond to the very small

angle θ % 1/γ. Summarizing above, the radiation from Undulator is a dipole radiation with

frequency γk0c in the mean velocity frame. The spectral feature in the observer frame originate
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on the relation between the particleÏs deÑection angle, a,
and the beaming angle, *h (Landau & Lifshitz 1975). For
ultrarelativistic particles and small deÑection angles, the
latter is estimated as follows. The particleÏs momentum is

The change in the perpendicular momentum duep D cm
e
c.

to the Lorentz force acting on the particle during the transit
time is The angle a is thent D j
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It is interesting to note that this ratio is independent of the
particleÏs energy (i.e., of c) and is determined by the proper-
ties of the magnetic Ðeld only, i.e., by B and It is morej

B
.

convenient, however, to use the wavevector, as ak
B
,

measure of the magnetic Ðeld scale, instead of Wej
B

D k
B
~1.

now deÐne the deÑection-to-beaming ratio as follows :

d 4
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e
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a
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There are two limiting cases.
First, d D a/*h ? 1, i.e., the deÑection angle is much

larger than the beaming angle (see Fig. 1a). Then, an obser-
ver sees radiation coming from short segments (““ patches ÏÏ)
of the electronÏs trajectory that are nearly parallel to the line
of sight (very much like the case of pure synchrotron
radiation). The magnetic Ðeld in every patch is almost
uniform, but it varies from patch to patch. The radiation is
pulsed with a typical duration The characteristicq

p
D 1/u

c
.

frequency of the observed radiation is thus Noteu D u
c
.

that in the time- or ensemble-averaged spectrum, the instan-
taneous Ðeld, which enters should be appropriatelyB

M
, u

c
,

averaged, In this case the emergent radiationB1 ^ SB
M
2T1@2.

is completely identical to synchrotron radiation from large-
scale weakly inhomogeneous magnetic Ðelds.

Second, d D a/*h > 1, i.e., the deÑection angle is smaller
than the beaming angle, so that the electronÏs entire trajec-
tory is seen by an observer, as shown in Figure 1b. The
particle moves along the line of sight almost straight and
experiences high-frequency jittering in the perpendicular
direction as a result of the random Lorentz force. We there-
fore refer to the emerging radiation as ““ jitter ÏÏ radiation. Its
spectrum is determined by random accelerations of the par-
ticle. Let us imagine an electron moving ultrarelativistically
along the line of sight with a constant velocity ; the trans-

FIG. 1.ÈEmission from various points along the particleÏs trajectory.
(a) a ? *h ; emission from selected parts (bold portions) of the trajectory is
seen by an observer. (b) a > *h ; emission from the entire trajectory is
observed.

verse accelerations of the electron are small. In the labor-
atory frame, the electron passes through the magnetic Ðeld
inhomogeneities having a typical scale with thej

B
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velocity c. In the particleÏs frame (i.e., where its parallel
velocity vanishes), the Ðeld correlation scale is j

B
@ D j

B
/c D

as a result of the Lorentz transformation. The elec-(k
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c)~1
tronÏs perpendicular acceleration changes signiÐcantly
during so that the characteristic fre-q D j
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c)~1,

quency of the emitted radiation is In theu
j0 D q~1 D ck
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c.

laboratory frame, this frequency is boosted to u
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j0.
Thus, the spectrum of the emergent radiation is peaked at
the frequency This frequency is higher than theu
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D c2k

B
c.

critical synchrotron frequency in the uniform magnetic Ðeld
of the same strength, namely,u

cp
,

u
c*

u
j

^ 3
2

d > 1 , (3)

as follows from equation (2).
We should warn here that despite their apparent simi-

larity, the jitter and free-electron laser emission mechanisms
are quite di†erent. The wiggler Ðeld in free-electron lasers is
appropriately adjusted for the electron motion to be in
phase with the produced radiation Ðeld to emit coherent
radiation. Jitter radiation is, in general, incoherent.

3. THE STRUCTURE OF THE MAGNETIC FIELD IN

GRB SHOCKS

To proceed further, a model for a magnetic Ðeld in GRB
shocks is required. We use the only presently available
quantitative theory of the magnetic Ðeld generation in
shocks proposed by Medvedev & Loeb (1999). To be spe-
ciÐc, we focus on internal shocks that produce c-ray emis-
sion. External shocks that are responsible for the delayed
afterglows may be treated similarly and will be considered
in a future publication.

Shock fronts are shown to be natural sites of the mag-
netic Ðeld generation. Right before a shock, the inÑowing (in
the shock frame) bulk plasma particles meet the outÑowing
particles that were reÑected (scattered) from the shock. Such
a two-stream motion is kinetically unstable. The emergent
magnetic Ðeld is random with zero mean and lies in the
plane of the shock front, i.e., perpendicular to the shock
velocity. In principle, all plasma species participate in the
instability. We assume the protons and electrons to be the
only species and discuss their contributions separately.

It is important to emphasize that the generated magnetic
Ðeld Ðlls the entire volume of a shock shell and is not
located within a thin layer of order several skin depths near
the front. There is a gas Ñow through a shock. Because of
Ñux freezing, the generated magnetic Ðeld is transported
with the shocked material downstream. This material is
replenished with a fresh one where a new magnetic Ðeld is
thus continuously produced. Since the magnetic Ðeld is long
lived and does not decay in a dynamical time, as indicated
by numerical simulations (see references in Medvedev &
Loeb 1999), this Ðeld will be present in the entire ejecta.

3.1. Fields Produced by the Electrons and Protons
In this subsection we brieÑy summarize the main results

of the theory of Medvedev & Loeb (1999) for future refer-
ence. Since electrons are light, the instability induced by
them is rapid : the typical e-folding length (i.e., the e-folding
time times the shock speed) is much smaller than the char-
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where χ = (γθ2), δ[cdots] is the Dirac delta function, θ and φ are depicted in Fig ??. ここに
z,x,theta,phiの方向の図を書く。We note that there is a correlation that θ and frequency. We

integrate of φ and χ in the integration range 0 < χ < ηmax, and we get the radiation spectrum:
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where P0 is a normalization constant, ν = kc/2γ2k0c is the normalized frequency, and νmin =

1/(1 + χmax. We note that we implicitly assumed θ % 1, so that χmax cannot be much larger

than 1/γ. The peak frequency of this spectrum is ν = 1 (ωmax = 2γ2k0c). The spectrum in

lower frequency region ν % 1 is dP/dν ∝ ν1, while the spectrum shows abrupt cutoff above

the peak. We note that the spectrum shows dP/dν ∝ ν3 in the very narrow frequency range in

slightly lower than peak. The radiation in this frequency range correspond to the very small

angle θ % 1/γ. Summarizing above, the radiation from Undulator is a dipole radiation with

frequency γk0c in the mean velocity frame. The spectral feature in the observer frame originate
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on the relation between the particleÏs deÑection angle, a,
and the beaming angle, *h (Landau & Lifshitz 1975). For
ultrarelativistic particles and small deÑection angles, the
latter is estimated as follows. The particleÏs momentum is

The change in the perpendicular momentum duep D cm
e
c.

to the Lorentz force acting on the particle during the transit
time is The angle a is thent D j
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It is interesting to note that this ratio is independent of the
particleÏs energy (i.e., of c) and is determined by the proper-
ties of the magnetic Ðeld only, i.e., by B and It is morej

B
.

convenient, however, to use the wavevector, as ak
B
,

measure of the magnetic Ðeld scale, instead of Wej
B

D k
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~1.

now deÐne the deÑection-to-beaming ratio as follows :
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There are two limiting cases.
First, d D a/*h ? 1, i.e., the deÑection angle is much

larger than the beaming angle (see Fig. 1a). Then, an obser-
ver sees radiation coming from short segments (““ patches ÏÏ)
of the electronÏs trajectory that are nearly parallel to the line
of sight (very much like the case of pure synchrotron
radiation). The magnetic Ðeld in every patch is almost
uniform, but it varies from patch to patch. The radiation is
pulsed with a typical duration The characteristicq

p
D 1/u

c
.

frequency of the observed radiation is thus Noteu D u
c
.

that in the time- or ensemble-averaged spectrum, the instan-
taneous Ðeld, which enters should be appropriatelyB

M
, u

c
,

averaged, In this case the emergent radiationB1 ^ SB
M
2T1@2.

is completely identical to synchrotron radiation from large-
scale weakly inhomogeneous magnetic Ðelds.

Second, d D a/*h > 1, i.e., the deÑection angle is smaller
than the beaming angle, so that the electronÏs entire trajec-
tory is seen by an observer, as shown in Figure 1b. The
particle moves along the line of sight almost straight and
experiences high-frequency jittering in the perpendicular
direction as a result of the random Lorentz force. We there-
fore refer to the emerging radiation as ““ jitter ÏÏ radiation. Its
spectrum is determined by random accelerations of the par-
ticle. Let us imagine an electron moving ultrarelativistically
along the line of sight with a constant velocity ; the trans-

FIG. 1.ÈEmission from various points along the particleÏs trajectory.
(a) a ? *h ; emission from selected parts (bold portions) of the trajectory is
seen by an observer. (b) a > *h ; emission from the entire trajectory is
observed.

verse accelerations of the electron are small. In the labor-
atory frame, the electron passes through the magnetic Ðeld
inhomogeneities having a typical scale with thej

B
D k

B
~1

velocity c. In the particleÏs frame (i.e., where its parallel
velocity vanishes), the Ðeld correlation scale is j

B
@ D j

B
/c D

as a result of the Lorentz transformation. The elec-(k
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c)~1
tronÏs perpendicular acceleration changes signiÐcantly
during so that the characteristic fre-q D j
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c)~1,

quency of the emitted radiation is In theu
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laboratory frame, this frequency is boosted to u
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j0.
Thus, the spectrum of the emergent radiation is peaked at
the frequency This frequency is higher than theu
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critical synchrotron frequency in the uniform magnetic Ðeld
of the same strength, namely,u
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,
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as follows from equation (2).
We should warn here that despite their apparent simi-

larity, the jitter and free-electron laser emission mechanisms
are quite di†erent. The wiggler Ðeld in free-electron lasers is
appropriately adjusted for the electron motion to be in
phase with the produced radiation Ðeld to emit coherent
radiation. Jitter radiation is, in general, incoherent.

3. THE STRUCTURE OF THE MAGNETIC FIELD IN

GRB SHOCKS

To proceed further, a model for a magnetic Ðeld in GRB
shocks is required. We use the only presently available
quantitative theory of the magnetic Ðeld generation in
shocks proposed by Medvedev & Loeb (1999). To be spe-
ciÐc, we focus on internal shocks that produce c-ray emis-
sion. External shocks that are responsible for the delayed
afterglows may be treated similarly and will be considered
in a future publication.

Shock fronts are shown to be natural sites of the mag-
netic Ðeld generation. Right before a shock, the inÑowing (in
the shock frame) bulk plasma particles meet the outÑowing
particles that were reÑected (scattered) from the shock. Such
a two-stream motion is kinetically unstable. The emergent
magnetic Ðeld is random with zero mean and lies in the
plane of the shock front, i.e., perpendicular to the shock
velocity. In principle, all plasma species participate in the
instability. We assume the protons and electrons to be the
only species and discuss their contributions separately.

It is important to emphasize that the generated magnetic
Ðeld Ðlls the entire volume of a shock shell and is not
located within a thin layer of order several skin depths near
the front. There is a gas Ñow through a shock. Because of
Ñux freezing, the generated magnetic Ðeld is transported
with the shocked material downstream. This material is
replenished with a fresh one where a new magnetic Ðeld is
thus continuously produced. Since the magnetic Ðeld is long
lived and does not decay in a dynamical time, as indicated
by numerical simulations (see references in Medvedev &
Loeb 1999), this Ðeld will be present in the entire ejecta.

3.1. Fields Produced by the Electrons and Protons
In this subsection we brieÑy summarize the main results

of the theory of Medvedev & Loeb (1999) for future refer-
ence. Since electrons are light, the instability induced by
them is rapid : the typical e-folding length (i.e., the e-folding
time times the shock speed) is much smaller than the char-
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on the relation between the particleÏs deÑection angle, a,
and the beaming angle, *h (Landau & Lifshitz 1975). For
ultrarelativistic particles and small deÑection angles, the
latter is estimated as follows. The particleÏs momentum is
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There are two limiting cases.
First, d D a/*h ? 1, i.e., the deÑection angle is much

larger than the beaming angle (see Fig. 1a). Then, an obser-
ver sees radiation coming from short segments (““ patches ÏÏ)
of the electronÏs trajectory that are nearly parallel to the line
of sight (very much like the case of pure synchrotron
radiation). The magnetic Ðeld in every patch is almost
uniform, but it varies from patch to patch. The radiation is
pulsed with a typical duration The characteristicq
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averaged, In this case the emergent radiationB1 ^ SB
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is completely identical to synchrotron radiation from large-
scale weakly inhomogeneous magnetic Ðelds.

Second, d D a/*h > 1, i.e., the deÑection angle is smaller
than the beaming angle, so that the electronÏs entire trajec-
tory is seen by an observer, as shown in Figure 1b. The
particle moves along the line of sight almost straight and
experiences high-frequency jittering in the perpendicular
direction as a result of the random Lorentz force. We there-
fore refer to the emerging radiation as ““ jitter ÏÏ radiation. Its
spectrum is determined by random accelerations of the par-
ticle. Let us imagine an electron moving ultrarelativistically
along the line of sight with a constant velocity ; the trans-

FIG. 1.ÈEmission from various points along the particleÏs trajectory.
(a) a ? *h ; emission from selected parts (bold portions) of the trajectory is
seen by an observer. (b) a > *h ; emission from the entire trajectory is
observed.

verse accelerations of the electron are small. In the labor-
atory frame, the electron passes through the magnetic Ðeld
inhomogeneities having a typical scale with thej
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as follows from equation (2).
We should warn here that despite their apparent simi-

larity, the jitter and free-electron laser emission mechanisms
are quite di†erent. The wiggler Ðeld in free-electron lasers is
appropriately adjusted for the electron motion to be in
phase with the produced radiation Ðeld to emit coherent
radiation. Jitter radiation is, in general, incoherent.

3. THE STRUCTURE OF THE MAGNETIC FIELD IN

GRB SHOCKS

To proceed further, a model for a magnetic Ðeld in GRB
shocks is required. We use the only presently available
quantitative theory of the magnetic Ðeld generation in
shocks proposed by Medvedev & Loeb (1999). To be spe-
ciÐc, we focus on internal shocks that produce c-ray emis-
sion. External shocks that are responsible for the delayed
afterglows may be treated similarly and will be considered
in a future publication.

Shock fronts are shown to be natural sites of the mag-
netic Ðeld generation. Right before a shock, the inÑowing (in
the shock frame) bulk plasma particles meet the outÑowing
particles that were reÑected (scattered) from the shock. Such
a two-stream motion is kinetically unstable. The emergent
magnetic Ðeld is random with zero mean and lies in the
plane of the shock front, i.e., perpendicular to the shock
velocity. In principle, all plasma species participate in the
instability. We assume the protons and electrons to be the
only species and discuss their contributions separately.

It is important to emphasize that the generated magnetic
Ðeld Ðlls the entire volume of a shock shell and is not
located within a thin layer of order several skin depths near
the front. There is a gas Ñow through a shock. Because of
Ñux freezing, the generated magnetic Ðeld is transported
with the shocked material downstream. This material is
replenished with a fresh one where a new magnetic Ðeld is
thus continuously produced. Since the magnetic Ðeld is long
lived and does not decay in a dynamical time, as indicated
by numerical simulations (see references in Medvedev &
Loeb 1999), this Ðeld will be present in the entire ejecta.

3.1. Fields Produced by the Electrons and Protons
In this subsection we brieÑy summarize the main results

of the theory of Medvedev & Loeb (1999) for future refer-
ence. Since electrons are light, the instability induced by
them is rapid : the typical e-folding length (i.e., the e-folding
time times the shock speed) is much smaller than the char-

~k

kc cos ✓2

kc cos ✓3

kc cos ✓4

JiCer	  radia,onの場合 !0
= kc cos ✓1

14年3月3日月曜日



52

! ⇠ �2!p

!0 =
!

2
(��2 + ✓2)

✓ ：放射の方向と速度の方向の間の角度

F! / !1 である理由付近で

：観測者系で見た電子の振動数

the deflection angle θdef is much smaller than 1/γ. In the mean velocity (of radiating electron)

frame, the electron can be regarded as a simple harmonic oscillator

x′ = A sin(k′βct′),

where k′ = γk0 is the wavenumber of the radiation in this frame, and A is a constant. The

radiation from it is the dipole radiation, and the frequency of it is ωdp ! k′c in this frame,

where we approximate β ∼ 1. The emitted energy per unit time into unit solid angle is
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where χ = (γθ2), δ[cdots] is the Dirac delta function, θ and φ are depicted in Fig ??. ここに
z,x,theta,phiの方向の図を書く。We note that there is a correlation that θ and frequency. We

integrate of φ and χ in the integration range 0 < χ < ηmax, and we get the radiation spectrum:
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1/(1 + χmax. We note that we implicitly assumed θ % 1, so that χmax cannot be much larger
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slightly lower than peak. The radiation in this frequency range correspond to the very small

angle θ % 1/γ. Summarizing above, the radiation from Undulator is a dipole radiation with
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on the relation between the particleÏs deÑection angle, a,
and the beaming angle, *h (Landau & Lifshitz 1975). For
ultrarelativistic particles and small deÑection angles, the
latter is estimated as follows. The particleÏs momentum is
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particleÏs energy (i.e., of c) and is determined by the proper-
ties of the magnetic Ðeld only, i.e., by B and It is morej

B
.

convenient, however, to use the wavevector, as ak
B
,

measure of the magnetic Ðeld scale, instead of Wej
B

D k
B
~1.

now deÐne the deÑection-to-beaming ratio as follows :

d 4
c

k
B

o
e
D

a
*h . (2)

There are two limiting cases.
First, d D a/*h ? 1, i.e., the deÑection angle is much

larger than the beaming angle (see Fig. 1a). Then, an obser-
ver sees radiation coming from short segments (““ patches ÏÏ)
of the electronÏs trajectory that are nearly parallel to the line
of sight (very much like the case of pure synchrotron
radiation). The magnetic Ðeld in every patch is almost
uniform, but it varies from patch to patch. The radiation is
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taneous Ðeld, which enters should be appropriatelyB
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averaged, In this case the emergent radiationB1 ^ SB
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is completely identical to synchrotron radiation from large-
scale weakly inhomogeneous magnetic Ðelds.

Second, d D a/*h > 1, i.e., the deÑection angle is smaller
than the beaming angle, so that the electronÏs entire trajec-
tory is seen by an observer, as shown in Figure 1b. The
particle moves along the line of sight almost straight and
experiences high-frequency jittering in the perpendicular
direction as a result of the random Lorentz force. We there-
fore refer to the emerging radiation as ““ jitter ÏÏ radiation. Its
spectrum is determined by random accelerations of the par-
ticle. Let us imagine an electron moving ultrarelativistically
along the line of sight with a constant velocity ; the trans-

FIG. 1.ÈEmission from various points along the particleÏs trajectory.
(a) a ? *h ; emission from selected parts (bold portions) of the trajectory is
seen by an observer. (b) a > *h ; emission from the entire trajectory is
observed.

verse accelerations of the electron are small. In the labor-
atory frame, the electron passes through the magnetic Ðeld
inhomogeneities having a typical scale with thej

B
D k

B
~1

velocity c. In the particleÏs frame (i.e., where its parallel
velocity vanishes), the Ðeld correlation scale is j

B
@ D j

B
/c D

as a result of the Lorentz transformation. The elec-(k
B

c)~1
tronÏs perpendicular acceleration changes signiÐcantly
during so that the characteristic fre-q D j

B
@ /c D (ck

B
c)~1,

quency of the emitted radiation is In theu
j0 D q~1 D ck

B
c.

laboratory frame, this frequency is boosted to u
j
\ cu

j0.
Thus, the spectrum of the emergent radiation is peaked at
the frequency This frequency is higher than theu

j
D c2k

B
c.

critical synchrotron frequency in the uniform magnetic Ðeld
of the same strength, namely,u

cp
,

u
c*

u
j

^ 3
2

d > 1 , (3)

as follows from equation (2).
We should warn here that despite their apparent simi-

larity, the jitter and free-electron laser emission mechanisms
are quite di†erent. The wiggler Ðeld in free-electron lasers is
appropriately adjusted for the electron motion to be in
phase with the produced radiation Ðeld to emit coherent
radiation. Jitter radiation is, in general, incoherent.

3. THE STRUCTURE OF THE MAGNETIC FIELD IN

GRB SHOCKS

To proceed further, a model for a magnetic Ðeld in GRB
shocks is required. We use the only presently available
quantitative theory of the magnetic Ðeld generation in
shocks proposed by Medvedev & Loeb (1999). To be spe-
ciÐc, we focus on internal shocks that produce c-ray emis-
sion. External shocks that are responsible for the delayed
afterglows may be treated similarly and will be considered
in a future publication.

Shock fronts are shown to be natural sites of the mag-
netic Ðeld generation. Right before a shock, the inÑowing (in
the shock frame) bulk plasma particles meet the outÑowing
particles that were reÑected (scattered) from the shock. Such
a two-stream motion is kinetically unstable. The emergent
magnetic Ðeld is random with zero mean and lies in the
plane of the shock front, i.e., perpendicular to the shock
velocity. In principle, all plasma species participate in the
instability. We assume the protons and electrons to be the
only species and discuss their contributions separately.

It is important to emphasize that the generated magnetic
Ðeld Ðlls the entire volume of a shock shell and is not
located within a thin layer of order several skin depths near
the front. There is a gas Ñow through a shock. Because of
Ñux freezing, the generated magnetic Ðeld is transported
with the shocked material downstream. This material is
replenished with a fresh one where a new magnetic Ðeld is
thus continuously produced. Since the magnetic Ðeld is long
lived and does not decay in a dynamical time, as indicated
by numerical simulations (see references in Medvedev &
Loeb 1999), this Ðeld will be present in the entire ejecta.

3.1. Fields Produced by the Electrons and Protons
In this subsection we brieÑy summarize the main results

of the theory of Medvedev & Loeb (1999) for future refer-
ence. Since electrons are light, the instability induced by
them is rapid : the typical e-folding length (i.e., the e-folding
time times the shock speed) is much smaller than the char-
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the deflection angle θdef is much smaller than 1/γ. In the mean velocity (of radiating electron)

frame, the electron can be regarded as a simple harmonic oscillator

x′ = A sin(k′βct′),

where k′ = γk0 is the wavenumber of the radiation in this frame, and A is a constant. The

radiation from it is the dipole radiation, and the frequency of it is ωdp ! k′c in this frame,

where we approximate β ∼ 1. The emitted energy per unit time into unit solid angle is

dP ′

DΩ′ =
e2c

8π
k′4A2 sin2 Θ, (A.1)

where Θ = &n· &̈x′e is the angle between the emission direction and second derivative of the dipole

moment. We transform the radiation to the observer frame and take a few approximation for

γ # 1, such as β ∼ 1 − 1/2γ2,we get

d3P

dχdkdφ
=

e2cγ4k4
0A

2

2π

[
(1 − χ2) + 4χ sin2 φ

(1 + χ)4

]
δ[k(1 + χ) − 2γ2k0], (A.2)

where χ = (γθ2), δ[cdots] is the Dirac delta function, θ and φ are depicted in Fig ??. ここに
z,x,theta,phiの方向の図を書く。We note that there is a correlation that θ and frequency. We

integrate of φ and χ in the integration range 0 < χ < ηmax, and we get the radiation spectrum:

dP

dν
= P0[ν(1 − 2ν + 2ν2)], (νmin < ν < 1) (A.3)

where P0 is a normalization constant, ν = kc/2γ2k0c is the normalized frequency, and νmin =

1/(1 + χmax. We note that we implicitly assumed θ % 1, so that χmax cannot be much larger

than 1/γ. The peak frequency of this spectrum is ν = 1 (ωmax = 2γ2k0c). The spectrum in

lower frequency region ν % 1 is dP/dν ∝ ν1, while the spectrum shows abrupt cutoff above

the peak. We note that the spectrum shows dP/dν ∝ ν3 in the very narrow frequency range in

slightly lower than peak. The radiation in this frequency range correspond to the very small

angle θ % 1/γ. Summarizing above, the radiation from Undulator is a dipole radiation with

frequency γk0c in the mean velocity frame. The spectral feature in the observer frame originate

⌫ =
!

2�2!p

F! / !3 スペクトルについて

⌫
*リニアスケール
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exponential is

ω
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c

)
∼ ω

2

[(
1

γ2
+ θ2

)
t +

c2

3r2
L

t3
]

, (A.9)

where rL is a curvature radius, and we approximate third order of the cτ/rL. The first order

and third order is comparable for τ ∼ mc/eB, but fifth order is 1/γ2 times smaller than them.

We rewrite the eqution (??) as

d2I

dωdΩ
=

e2ω2

4π2c

∣∣−ε‖A‖(ω) + ε⊥A⊥(ω)
∣∣2 , (A.10)

where ε‖ and ε⊥ are unit vector with direction is depicted in Fig ??. The A‖ and A⊥ are

written by modified Bessel functions, so that we get the radiated energy per frequency range

per unit solid angle is

d2I

dωdΩ
=

e2

3π2c

(
ω2r2

L

c

)2 (
1

γ2
+ θ2

)2 [
K2

2/3(ξ) +
θ2

(1/γ2) + θ2
K2

1/3(ξ)

]
, (A.11)

ξ =
ωrL

3c

(
1

γ2
+ θ2

)3/2

. (A.12)

Since the K2/3(ξ) term dominate in equation (A.11), we see the frequency dependence in low

frequency region for θ = θ1 = const by using K2/3(ξ). We use asymptotic behavior for Bessel

function

K2/3(ξ) ∝ ξ
2/3 for ξ $ 1 (A.13)

since ξ $ 1 means low frequency. As a result, we get the radiation spectra for a observer in

the particular direction is

d2I

dωdΩ

∣∣∣∣∣
θ=θ1

∝ ω2/3. (A.14)

We note that this index of 2/3 is harder than the 1/2 which we obtained by using angle

diffusion. We can understand it by comparing two cases that though field strength σ is equal

to each other, a < 1 for one and a > 1 for the other. The b = 0 for each cases for simplicity.

The beaming cone sweeps for a > 1 is more quickly than a < 1 cases. Therefore, the intensity

is weaker for a > 1 than for a < 1 for the same PFT, i.e., for the same frequency. Thus, the

spectrum for a > 1 is harder than for a < 1.
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プラズマ不安定の物理的描像
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the ISM magnetic Ðeld in external shocks yields a Ðeld
amplitude G, which is too weakB D cBISM D 10~4(c/102)
(Sari et al. 1996) compared to the required equipartition
value cm~3)1@2 G, and can accountBeq D 50(c/102)(nISM/1
only for Here c \ (1 [ u2/c2)1@2 isv

B
\ (B/Beq)2 [ 10~11.

the Lorentz factor of the wind outÑowing at a velocity u.
Alternatively, some magnetic Ñux might originate at the
GRB progenitor and be carried by the outÑowing Ðreball
plasma (or by a precursor wind). Because of Ñux freezing,
the Ðeld amplitude would decrease as the wind expands. In
this case, only a progenitor with a rather strong magnetic
Ðeld D1016 G might produce sufficiently strong Ðelds
during the GRB emission. However, since the Ðeld ampli-
tude scales as B P V ~2@3 for an expanding shell of volume
V , even a highly magnetized plasma at R D 107 cm would
possess a negligible Ðeld amplitude of D10~2 G, or v

B
[

10~7, at a radius of cm, where the afterglow radi-R Z 1016
ation is emitted3 (see also et al. 1993). Moreover,Me" sza" ros
the emitting material behind the external shock is contin-
uously replenished by the ISM, so the Ðeld originally
carried by the Ðreball ejecta cannot account for the after-
glow radiation.

None of the above mechanisms is capable of generating
near-equipartition magnetic Ðelds in the external shocks
that produce the delayed afterglow emission. In this paper,
we propose a di†erent, universal, mechanism of magnetic
Ðeld generation in GRB shocks. It involves the relativistic
generalization of the two-stream (Weibel 1959) instability in
a plasma. This instability is driven by the anisotropy of the
particle distribution function (PDF) and, hence, could
operate in both internal and external shocks. Our main
results are as follows :

1. The characteristic e-folding time in the shock frame for
the instability is D10~7 s for internal shocks and 10~4 s for
external shocks. This time is much shorter than the dynami-
cal time of GRB Ðreballs.

2. The generated magnetic Ðeld is randomly oriented in
space, but always lies in the plane of the shock front.

3. The instability is powerful. It only saturates by non-
linear e†ects when the magnetic Ðeld amplitude approaches
equipartition with the electrons (and possibly with the ions).

4. The instability isotropizes the PDF, thus e†ectively
heating the electrons and protons.

5. The characteristic coherence scale of the generated
magnetic Ðeld is of the order of the relativistic skin depth,
i.e. D103 cm for internal shocks and D105 cm for external
shocks. This scale is much smaller than the spatial scale of
the source.

6. The mean free path for Coulomb collisions is larger
than the Ðreball size. However, the randomness of the gen-
erated magnetic Ðeld provides e†ective collisions due to
pitch-angle scattering of the particles in an otherwise colli-
sionless plasma and, thus, justiÐes the use of the magneto-
hydrodynamic (MHD) approximation for GRB shocks. The
magnetic Ðelds communicate the momentum and pressure
of the outÑowing Ðreball plasma to the ambient medium
and deÐne the shock boundary.

3 Both the magnetic Ðeld energy density and the thermal energy of the
Ðreball scale as PV ~4@3 for adiabatic expansion. However, when shocks
are generated, the plasma is heated because of the dissipation of the Ðreball
kinetic energy, and the magnetic energy parameter decreases far below
equipartition in the post shock gas.

FIG. 1.ÈIllustration of the instability. A magnetic Ðeld perturbation
deÑects electron motion along the x-axis, and results in current sheets ( j) of
opposite signs in regions I and II, which in turn amplify the perturbation.
The ampliÐed Ðeld lies in the plane perpendicular to the original electron
motion.

The above mechanism results in tangential magnetic
Ðelds near the apparent limb of the source. Hence, the long-
term synchrotron emission from the limb would be linearly
polarized along the radial direction relative to the source
center. Although the net polarization of a circularly sym-
metric source is zero, scattering of the radio afterglow emis-
sion of GRBs by the intervening Galactic interstellar
medium would break the symmetry in the source image and
result in polarization scintillations. This e†ect can be used
to test the reality of our proposed mechanism for the gener-
ation of magnetic Ðelds in GRB blast waves.

The outline of the paper is as follows. The physical
mechanism of the instability is discussed in ° 2. The gener-
ation of magnetic Ðelds in internal and external shocks is
discussed in ° 3. In ° 4 we predict the polarization scintil-
lation signal in our model. Finally, ° 5 summarizes our main
conclusions.

2. TWO-STREAM INSTABILITY

The instability under consideration was Ðrst predicted by
Weibel (1959) for a nonrelativistic plasma with an aniso-
tropic distribution function. The simple physical interpreta-
tion provided later by Fried (1959) treated the PDF
anisotropy more generally as a two-stream conÐguration of
a cold plasma. Below we give a brief, qualitative description
of this two-stream magnetic instability.

Let us consider, for simplicity, the dynamics of the elec-
trons only, and assume that the protons are at rest and
provide global charge neutrality. The electrons are assumed
to move along the x-axis (as illustrated in Fig. 1) with a
velocity and equal particle Ñuxes in opposite¿ \ ^xü v

xdirections along the x-axis (so that the net current is zero).
Next, we add an inÐnitesimal magnetic Ðeld Ñuctuation,

The Lorentz force, deÑectsB \ zü B
z

cos (ky). [e(¿/c) Â B,
the electron trajectories as shown by the dashed lines in
Figure 1. As a result, the electrons moving to the right will
concentrate in layer I, and those moving to the left in layer
II. Thus, current sheaths form which appear to increase the
initial magnetic Ðeld Ñuctuation. The growth rate is ! \

where is the nonrelativistic plasmau
p
v
y
/c, u

p
2 \ (4ne2n/m)

frequency (Fried 1959). Similar considerations imply that
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a ⇠ 1天体で現実に
期待される値

mildly relativistic、sub-equipartition
PWNでは実際に粒子エネルギーが支配的
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他
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dW
/d

ω

ω/ω0

Fig. 5.— Radiation spectra for a/b = 1, 3, 5 from top down. The amplitude is multiplied

102 to the spectra for a/b = 1, and 10−2 to that for a/b = 5 for easy to see

Fig. 6.— Thick line shows the orbit for the radiating electron for a/b = 500 > γinit thin line

shows a sine curve for comparison.

:Non linear trajectory
PFTが 1/!st =

mc

eE より長くなる部分が表れる。

放射スペクトルの
特徴的値では
なくなってくる。

!st が

Linear Acceleration Emission的
になってくる。 

⌘ > �init
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軌道
平均速度系では ⌘ = !st/!p で軌道が変わる
観測者系では

�
x

= � sin!ptq
↵+ sin2 !pt

↵ ⌘
✓
�init
⌘

◆2

�z = �
p

↵� 1/⌘2q
↵+ sin2 !pt が運動を決める。

⌘ < � のレンジにおいては

!st をパラメータとして用いてよい。
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LAEの典型的振動数
vend

~E

0 L L ⌘ A
c

!st

eEL = Amc2

v0

�end � �0 = A

�end � A との時 ! ⇠ �2
0
L

c
と近似できる。

一般の場合は初等的であるが煩雑なので省略
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