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Abstract

We present the results of the first principle numerical calculations for the radiation spectrum

from relativistic electrons moving in a turbulent electromagnetic field and its applications to

high energy astrophysical objects. Our method does not contain any approximations for the

calculation of the radiation spectrum from prescribed electron trajectories, since the Lienard-

Wiechert potential is employed directly. We investigate the cases for which we cannot use any

approximated radiation formula.

We first show the radiation spectra from electrons moving in a static and small scale

magnetic turbulence. The radiation is characterized by the strength parameter a ≡ ωst/ktypc =

eσ/mc2ktyp, where ωst is the cyclotron frequency defined by the spatial averaged magnetic

field strength σ =< B2 >1/2, and k−1
typ is the typical scale of the magnetic turbulence. For

a � γ, where γ is the Lorentz factor of the radiating electrons, and for a � 1, the radiation

has been well studied as the synchrotron radiation and the jitter radiation, respectively. We

investigate the radiation spectra for previously unexplored parameter range of 1 . a . γ.

The obtained spectrum shows a novel shape which has not been seen before. The spectrum in

middle frequency region resembles the synchrotron one, but the spectrum of frequency region

lower than a−3γ2ωst deviate from it, and an extra power law component emerges in frequency

region higher than the synchrotron cutoff. We interpret this newly found spectral shape by

considering the electron orbit.

Secondly, we investigate the radiation from electrons in a Langmuir (electrostatic) turbu-

lence. Since the Langmuir waves oscillate rapidly with plasma frequency ωp, we take it into
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account. We perform calculations of radiation spectra for various values of a defined by using

σ =< E2 >1/2 and of oscillation parameter b ≡ ωp/ktypc, and we obtain a chart of spectral

signatures in a − b plane. The most important results here is the clarification of the spectral

shape for a > b > 1, which has been misidentified or confused in other previous studies. The

typical frequency is ∼ γ2ωst, and the spectral index in the frequency region lower than the typ-

ical frequency is 1/3. We confirm the origin of the newly found signatures by semi-analytical

calculations and name the radiation mechanism for a > b > 1 ”Wiggler Radiation in Langmuir

turbulence” (WRL) after the Wiggler, which is an insertion device of the intense high energy

radiation, since the mechanism which determines the spectral features resembles the Wiggler

mechanism.

Thirdly, we propose a model of the gamma ray flares of the Crab nebula using the radiation

signatures of the jitter radiation. The central problem here is that the peak energy of the flares

exceeds the maximum energy Ec determined by synchrotron radiation loss. When there exists

a turbulent magnetic field with a < 1, jitter radiation can emit photons with energy higher

than Ec. We discuss a model in which the flares are triggered by plunging of the high density

blobs into the termination shock and forming the magnetic turbulence with a < 1. We predict

the observational signatures for future observations to be confronted with our models.
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Chapter 1

Introduction

High energy astrophysical objects such as Gamma Ray Bursts (GRB), Active Galactic Nuclei

(AGN), and Pulsar Wind Nebulae (PWN) are the most spectacular phenomena in the universe.

It is common that they have relativistic flows, i.e., relativistic jets or relativistic winds. Their

bulk kinetic energy is converted to the thermal and non-thermal particles at collisionless shocks,

which are formed by plunging of jets or winds into ambient matters (external shocks), or by

collisions of their internal structures (internal shocks). In addition, the magnetic reconnection

may play an important role for energy conversion. The energy is finally converted to the high

energy radiation by non-thermal particles. The major part of radiation is from high energy

electrons, although high energy protons sometimes involve creating gamma ray emission. The

electrons emit X-rays and gamma-rays by synchrotron and Inverse Compton scattering, which

are most popular explanations for the observed spectra. However, there are many observations

which are inconsistent with these radiation theories. Although much effort has been put in

making explanations for those observations, they are still open problems.

The turbulence is one of the promising factors for the radiation mechanism which we have

not fully considered. From the viewpoint of the particle acceleration, it has been claimed that

the turbulent electromagnetic fields are generated and amplified by some plasma instabilities

at the shock region. However, the study of the radiation mechanisms from electrons in electro-
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2 CHAPTER 1. INTRODUCTION

magnetic turbulence are still embryotic. Medvedev (2000) proposed the radiation mechanism

from a relativistic electron moving in a static small scale turbulent magnetic field in the con-

text of the GRB, and he called this radiation mechanism ”jitter radiation”. Fleishman (2006)

extended the radiation theory for multi dimensional turbulence, and he called the radiation

mechanism ”Diffusive Synchrotron Radiation”. Stimulated by these studies, some researchers

including themselves have been trying to clarify the radiation features from electrons in general

electromagnetic turbulences. These researches have not been completed yet.

It is the goal of this thesis to shed light on the radiation theory in the context of the

high energy astrophysical objects. We perform first principle numerical calculations to obtain

the radiation spectra for various electromagnetic turbulences. In chapter 2, we describe the

summary of the observational facts which are hard to explain with the existing radiation

theories. In chapter 3, we describe the summary of the past studies related to our study

in this thesis. We also describe our motivations for investigations of the radiation spectra

here. In chapter 4, we describe our numerical method which we use to calculate the radiation

spectra from electrons moving in random electromagnetic fields. In chapter 5, we present the

results of calculations of radiation spectra for static magnetic turbulence. This chapter 5 is

based on the paper Teraki & Takahara (2011). In chapter 6, we present the results of the

calculations of radiation spectra for oscillating Langmuir turbulence. This chapter 6 is based

on the paper Teraki & Takahara (submitted to ApJ). In chapter 7, we present a model of the

unresolved observational results of the gamma ray flares of the Crab nebula. We reproduce

the flare by jitter radiation mechanism, and discuss the constraints on the physical situation

when flares occur. This chapter 7 is based on the paper Teraki & Takahara (2013). In chapter

8, we draw an overall summary and conclusions. In Appendix A, we review the basics of the

radiation from a relativistic charged particle. In Appendix B, we review past studies related

to this thesis in detail, which is an extension of the chapter 3. In Appendix C, we describe the

physical interpretations of spectral indices which emerge in the radiation spectra in various

configurations of electromagnetic turbulences. In Appendix D, we review the generation of the
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electromagnetic turbulences by plasma instabilities.





Chapter 2

Observations of High Energy

Astrophysical Objects

In this chapter, we shortly review the observations of the high energy astrophysical objects

which have relevances to this thesis. We concentrate our interests on the observational facts

which we refer to in later chapters.

2.1 Gamma ray bursts

Gamma-ray bursts (GRB) are intense signals of ∼ 100 keV- 1 MeV photons lasting for 10−3−

103 s and appear at random in the sky about once a day. These short, energetic bursts of

γ-rays are likely signs of the birth of rapidly spinning, stellar-mass black holes or neutron stars

with high magnetization. They also reveal very broadband afterglows, from radio to X-rays.

Moreover, they are at cosmological distances, being a unique tool to explore the state of the

entire universe. Now it is believed that a highly relativistic plasma jet which is ejected from

a collapsing star emits γ-rays, and the interaction of the jet with surrounding medium of the

source makes afterglow. However, it remains unclear how the jet produces the γ-rays. The

standard model of GRB is based on the synchrotron radiation from accelerated electrons at the

5



6 CHAPTER 2. OBSERVATIONS OF HIGH ENERGY ASTROPHYSICAL OBJECTS

Figure 2.1: Typical spectrum of the GRB. This spectral shape is represented Band function equation

(2.1).

internal shocks in the jets. However, a nonnegligible number of GRB contradict this model.

The observational spectra of prompt emission of GRB are well described by a smoothly-joining

broken power law, known as the ”Band function” (Band et al., 1993)

N(E) = N0

(E/E0)
α exp(−E/E0) for E < (α− β)E0,

(E/E0)
β(α− β)α−β exp(β − α) for E > (α− β)E0,

(2.1)

which is depicted in Figure 2.1. Three independent spectral parameters are involved, i.e., a

low energy photon spectral index α, a high energy photon spectral index β, and the transition

energy E0 or peak of E2N(E) spectrum for β < −2 (Ep = (α + 2)E0). It is found that α
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Figure 2.2: Observed distribution of α which is the photon index of the low energy side of the Band

function (Kanko et al. 2006).

centered around −1 and their distribution width is ∼ 1, and β centered around −2.2 and

their distribution width is ∼ 1.5. Ep distribution is log-normal, centered around ∼ 250 keV.

Around a third of GRBs show a spectrum in the low energy side of the peak harder than

the synchrotron theory predicts (α > −2/3), which is firstly claimed by Preece et al. (1998),

and we can see them in the α-distribution in Figure 2.2 (Kaneko et al. 2006). It is a crucial

problem, because the observations of a third of GRB contradict the standard scenario. To

explain these GRBs, other radiation mechanisms are needed.
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Figure 2.3: Cartoon of the typical morphology of AGN jets

2.2 Relativistic jets in active galactic nuclei

Active Galactic Nuculei (AGN) are the central region of a galaxy from where intense broadband

radiation is emitted. According to the standard paradigm, the central engine of AGN consists

of an accreting supermassive black hole (BH) weighing millions to several billions of solar

masses. Moreover, relativistic jets are launched from vicinity of the BH.

We do not know the geometry of the accretion flow within a few tens of gravitational radii,

i.e., whether it is thin disk that continues down to the innermost stable circular orbit (ISCO)

or if the flow becomes closer to spherical near the BH. The accretion disk emits thermal

ultraviolet, optical, and infrared radiation. Moreover, X-rays come from central engine. It
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Figure 2.4: A composite image of the jet 3C 273. The colors correspond to the wavelength and

also observation instruments. The wavelength of each instrument is as follows: VLA-radio, Spitzer-

infrared, Hubble-optical, and Chandra-x-ray.

is thought to be from hot electrons in the corona by Compton scattering off some of these

photons.

The jets can appear long or short, nearly straight or sharply curved, and relatively smooth

or dominated by knots. The majority of knots move at apparently superluminal velocities

(Jorstad et al. 2001, 2005). From this fact, we know that the jets have relativistic speed. This

large amount of bulk kinetic energy is converted to the particle energy and electromagnetic

field at the shock region. The synchrotron radiation and inverse Compton scattering are also

major emission mechanism for the emission regions such as knots, hot spots and lobes of AGN
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Figure 2.5: Broadband spectral energy distributions of the 3C 273 jet. Upper panel shows radiation

spectra of knot regions of D1, C2, and C1 in Figure 2.4. Lower panel shows radiation spectra of head

regions of H1 and H2. Extra components are seen beyond the first cut off around 1014Hz.

jets. A cartoon of them is depicted in Figure 2.3 The superluminal knots are thought to be the

internal shock region, and a part of subluminal knots may be the recollimation shock region.

The internal structure is smoothed out by internal shocks. Then, the average flow interacts

with the external medium and forms the external shock. This terminated region is the hot

spots, and the thermalized gas expands sideway and makes the radio lobe (Figure 2.3).

The standard model of AGN is as above. This model has succeeded in explaining the

observed signatures, such as the morphology and multiband spectra. However, there are

observations which are difficult to explain by a simple picture in the standard model. For
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example, the optical region of radiation spectra of knots and hot spots for 3C273 shows peculiar

trend (Uchiyama et al. 2006). They are described by a power law in radio region and there

is a cutoff feature in infrared region, and an extra power law component emerges in optical to

X-ray region (Figure 2.5). We can see the cutoff and extra power law component in the spectra

for both of knot regions D1 and C2. On the other hand, although we see that feature in the

hot spot of H2, we do not see that in the hot spot H1. The major interpretation of this type of

spectra is synchrotron radiation from two populations of non thermal electrons. However, it is

ambiguous how to make two distinct electron populations. Alternatively, it might be possible

that the emission is from a single electron population and the spectral shape is characterized

by non-standard radiation mechanisms. We lastly note that the same spectral features are

seen in other AGN jets such as PKS 1136-135 and 3C 445, which have been reported in a few

papers (Uchiyama et al. 2007, Perlman et al. 2010). Thus, this may common features for

AGN jets.

2.3 Gamma ray flares of the Crab nebula

The Crab nebula and its pulsar are among the best-studied objects in astronomy (X-ray

image of the Crab nebula is shown in Figure 2.6, which is from Chandra website http:

//chandra.harvard.edu/photo/2002/0052/0052\ xray\ widefield.jpg). Their origin is

a massive core-collapse supernova observed in the year 1054 A.D. During the explosion of the

progenitor star, a fast-rotating neutron star, the Crab pulsar, was formed. The pulsar dis-

sipates an enormous amount of rotational energy into the surrounding medium at a rate of

∼ 5 × 1038erg/s. Most of the luminosity is kinetic, i.e., pulsar wind has almost all spindown

luminosity. The wind consists of mainly electrons and positrons, which are cold in the co-

moving frame of the wind. Its bulk kinetic energy is converted to the particle energy at the

termination shock. They form the pulsar wind nebula and lose their energy by radiation.

Although the Crab nebula has been regarded as a stationary emitter except for a secular
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Figure 2.6: Chandra X-ray image of the Crab nebula from Chandra website.
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Figure 1: Spectral energy distribution of the Crab neb-Figure 2.7: Multi band observed spectra of the Crab nebula (Yuan et al. 2011a). The filled red

square is the strongest gamma rays flare observed by Fermi satellite in April 2011.

change due to the expansion, recently, strong flares were detected five times in the range

> 100 MeV by AGILE (Tavani et al. 2011) and Fermi (Abdo et al. 2011, Buehler et al.

2012, Ojha et al. 2012) satellites (Figure 2.7). The flares occur about once in a half year,

the flux doubling timescale is around 8 hours, and duration time is a few weeks. The peak

energy is as high as 375MeV which is a challenge for the standard scenario of pulsar wind

nebulae (Buehler et al. 2012). When electrons/positrons are accelerated on gyro timescale,

synchrotron radiation limits the attainable energy (see e.g. Kirk & Reville 2010), and the

maximum energy of synchrotron radiation is ∼ 100MeV. It is notable that this maximum

energy of the synchrotron radiation does not depends on the magnetic field strength. The
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peak energy of the flares exceeds this value, it is the central serious problem of these flares.

Since there seem to be no counterparts in other energy ranges, they should involve only the

highest energy particles. In fact, the flare of April 2011 shows very hard spectrum. The

photon index is γF = 1.27 ± 0.12 which is averaged about time in all over the flare state

(Buehler et al. 2012), and become as hard as γF = 1.08± 0.16 which is calculated in only the

most luminous period in the flare period (Clausen-Brown & Lyutikov 2012). The peak flux

amounts to (186 ± 6) × 10−7cm−2s−1, 30 times larger than the quiescent one. The isotropic

luminosity amounts to 4× 1036erg s−1 corresponding to 1% of the spin down luminosity of the

Crab pulsar. The size of emission region of the flares should be as small as ctfluc ∼ 1015cm

or ctdur ∼ 3 × 1016cm, where tfluc is the fluctuation timescale estimated from flux changes

and tdur is the duration timescale of the flares. Either of them is very small compared to

the circumference of the termination shock 2πrts ∼ 2× 1018cm, where rts is the radius of the

termination shock from the Crab pulsar. It is notable that such a large amount of energy is

concentrated in a small region. The peak of the νFν spectrum of the Crab nebula is in the

optical band. It is about 2× 1037erg/s. On the contrary, the mean value in the flaring state of

April 2011 flare is 2× 1036erg/s. We have to reproduce such a high lumisosity in the models.

We note that peculiar gamma ray flares such as that we show above have not been seen in

other PWNe. Although more than 50 γ-ray pulsars are detected in energy range higher than

100 GeV, Fermi-LAT observed only four PWNe (Ackermann et al., 2011). Other PWNe than

the Crab nebula show no evidence of the sharp decrease ∼ 100MeV and the shallow increase

above ∼ 1GeV as seen in the Crab nebula.



Chapter 3

Past Studies for Radiation Spectrum

As we see in chapter 2, high energy astrophysical objects often contain features which are

not easily explained by the conventional synchrotron and inverse Compton emissions. To

explain these observations, the radiation mechanisms are still an active issue. Recently, much

attention has been paid to the effects of electromagnetic turbulences on the radiation signatures

(e.g., Medvedev 2000, Fleishman 2006, Kelner, Aharonian, & Khangulyan 2013 and Mao &

Wang 2013), since the main scene of the emission regions of high energy astrophysical objects

is collisionless shocks, and the turbulent electromagnetic fields would be generated in the

shock region by some plasma instabilities (see Appnedix D). However, the radiation spectra

from relativistic electrons moving in turbulent electromagnetic fields have not been studied

completely. There is a room for novel emission signatures in the consideration of turbulence.

To show the unexplored field about radiation spectra from turbulent field, we start from a

discussion of the break of synchrotron and inverse Compton approximations.

15



16 CHAPTER 3. PAST STUDIES FOR RADIATION SPECTRUM

3.1 Breaks of synchrotron and inverse Compton approx-

imations

Consider relativistic electron moving in a turbulent magnetic field. If the spatial scale of

magnetic field (i.e. typical eddy scale) λB = 2π/ktyp is much larger than the local Larmor

radius of the electron, there is no difference between this turbulent field and the uniform

magnetic field for this electron. Thus, the radiation spectrum is identical to the synchrotron

radiation1. On the other hand, if λB is much smaller than the local Larmor radius rL, the

electron does not trace a herical orbit, but rather trace an almost rectilinear orbit. The

radiation from this electron should be different from the synchrotron radiation for this case.

Radiation spectra from a small scale turbulent magnetic field are recently rediscovered un-

der a very simple configuration, and it is called the ”jitter radiation” (Medvedev 2000). Before

discussing the radiation for more general turbulence, we shortly show the one-dimensional jit-

ter radiation. More detailed discussion is shown later in this chapter and Appendix B. In the

treatment of Medvedev (2000), the magnetic turbulence is assumed to be essentially of one

mode and one-dimensional dependence along the velocity written as ~ktyp = (kx, 0, 0). Differ-

ences from the synchrotron radiation become significant when λB is smaller than the Photon

Formation Length (PFL: the concept of PFL is explained in Appendix A.) of the synchrotron

photons rL/γ, where γ is the Lorentz factor of the electron. The reason of the PFL of the

synchrotron radiation is not rL but rL/γ is from the relativistic beaming effects, and further

explanation is written in Appendix A. When we can neglect the time variability of the turbu-

lent field2, the radiation spectrum is characterized by the spatial scale per PFL of synchrotron

1Rigorously speaking, the radiation spectra from ensemble of electrons moving in large scale turbulence

are not perfectly identical to the uniform magnetic field. Because of the fluctuation of the local strength and

direction of magnetic field, the spectrum around the peak becomes broader and flatter than the spectrum for

uniform field (Crusius & Schlickeiser 1986).
2In many cases of astrophysical shocks, Weibel instability is thought to be the most promising processes

to generates the magnetic field. The Weibel instability generate magnetic entropy waves. The entropy mode
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radiation, which is called strength parameter:

a = λB
e|B|

2πmc2
, (3.1)

where e is elementary charge, m is the mass of the electron, c is the speed of light, and |B|

is the strength of the magnetic fields. We note that the strength parameter does not depend

on the particle Lorentz factor. When a� γ, the scale of turbulent fields is much larger than

the Larmor radius, so that the synchrotron approximation is valid. In contrast, when a � 1,

λB is much smaller than the scale rL/γ, so that the electron change the acceleration direction

before the beaming cone sweeps observer. In other words, the deflection angle θdef when the

electron moves the distance λB is smaller than 1/γ. Therefore, jitter approximation that the

observer is always in the beaming cone at least in one deflection time can be applied.

The spectral features of the jitter radiation are significantly different from the synchrotron

radiation. For example, the peak frequency in ωFω spectrum is γ2ktypc for a < 1, which is

different from the synchrotron frequency γ2eB/mc. The spectrum for the frequency region

lower than the peak is Fω ∝ ω1, while that for higher than the peak is an abrupt cutoff. As

we see above, the spectrum for the magnetic turbulence is calculated for a � 1 and a � γ

by using appropriate approximations. However, when 1 . a . γ, no simple approximation of

the radiation spectrum has been known. This is an unexplored field for the static magnetic

turbulent fields.

Next we discuss the break of the inverse Compton approximation. When a relativistic elec-

tron is moving in an electromagnetic wave, in other words, an relativistic electron interacting

with photons, the radiation from the electron is usually called inverse Compton scattering.

Rees (1972) claimed that this approximation breaks down when the strength of the electro-

magnetic field is very large, and he called it ”synchro-Compton radiation”. He assumed that

does not oscillate, so the typical timescale is determined by the turnover time of an eddy. It is longer than

the crossing time of a relativistic electron if we assume the background plasma is sub-relativistic. Therefore,

we can treat the magnetic field as a static field when we calculate the radiation spectra for the zeroth-order

approximation.
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the strong electromagnetic wave is emitted from the Crab pulsar with frequency Ω (30Hz)

according to the ”oblique rotator” model by Ostriker & Gunn (1969), and argued that the ra-

diation from an electron moving in the strong wave is not the inverse Compton scattering (with

frequency γ2Ω) but synchrotron-like (synchro-Compton) radiation. He claimed that the radia-

tion signature of synchro-Compton radiation resembles that of the synchrotron radiation. The

typical frequency is determined by the field strength as γ2eB/mc, and the low frequency spec-

tral index is roughly 1/3. He pointed out that this wave fulfills the condition of eB/mc > Ω,

which is calculated from the frequency and strength of the strong wave. Therefore, the de-

flection angle θdef is larger than 1/γ in this wave, so that the typical photon formation time

(PFT) changes from 1/Ω to mc/eB. Getmantsev & Tokarev (1972) stated that the radiation

signature from a single charged particle is determined by frequency or wavelength of the back-

ground wave for θdef � 1/γ, while it is determined by the field strength for θdef � 1/γ in the

same way as synchrotron radiation as long as the energy variations at the particle motion in

the arbitrary electromagnetic field are smaller than the energy of the particle. Although the

explicit expressions of the radiation spectra from a single electron for θdef ∼ 1/γ are not known

as they noted, they presented a general expression of radiation spectrum from an ensemble of

electrons, since the radiation spectra from relativistic electrons with a power law distribution

are weakly affected by the radiation features from a single particle. Their formula covers wide

range of the physical conditions of emission regions in the astrophysical objects, since it is

written for particles with power law distribution, which is the major particle distribution in

the astrophysical objects.

3.2 Radiation theories for turbulent electromagnetic fields

After the pionearing works of seventies such as Getmantsev & Tokarev 1972, several works

which calculate the radiation spectra precisely by using statistical treatments have been per-

formed in eighties. Toptygin & Fleishman (1987, hereafter TF87) developed the most sophis-
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ticated method for this approach. We shortly review their treatment in Appendix B. They

introduced the critical wavelength λcrit and called components with λ ≤ λcrit the ”small scale

component”, where λcrit obeys the inequality

rg � λcrit � rg/γ. (3.2)

The inequality can be transformed to 1 � λcrite|B|/mc2 � γ, so that the division through

λcrit may be ambiguous. Based on the theory of TF87, Fleishman (2006) developed a radi-

ation theory from a relativistic electron in a static turbulent magnetic field, and he call it

Diffusive Synchrotron Radiation (DSR). Therefore, the critical wavelength in DSR theory is

also ambiguously defined. It is a notable point for discussions in chapter 5.

For later convenience, we shortly review their treatment of DSR theory. They treat the

electron motion by a statistical approach and use a perturbative treatment for calculation of

the radiation. They firstly assume a � 1 and therefore, rectilinear trajectory with constant

velocity but take into account non-zero acceleration from the external field. The calculation

formula for the radiation spectra is the same as the one written in Landau & Lifshitz (1971)

for θdef � 1/γ. They calculate the correlation between the acceleration and the Fourier modes

of magnetic turbulence, and get the radiation spectra. The peak frequency in ωFω spectrum

is γ2ktypc, which is the same as the jitter radiation. The other spectral features are different

from the one-dimensional jitter radiation because there are differences in assumed magnetic

turbulences between the jitter theory and DSR theory. In DSR, the magnetic turbulence is

isotropic and has a power law distribution represented as B2(k) ∝ k−µ. The radiation spectrum

in frequency region lower than γ2ktypc is Fω ∝ ω0, and becomes Fω ∝ ω−µ in higher frequencies,

because they assumed that the turbulence exists up to the maximum wave number kmax � ktyp,

which is in contrast to the jitter radiation (Medvedev 2000). Next, they considered the effects

of multiple scattering beyond the perturbative treatment for a > 1. The angle between the

velocity and observer direction becomes larger than the beaming cone after many deflections

even for θdef < 1/γ, and the approximation of rectilinear trajectory is broken. They treat the
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change of direction of motion in many deflections by diffusion approximation. In consequence,

a spectral break emerges in the low frequency region with a suppression of low frequency

photons. The spectrum becomes Fω ∝ ω1/2 from this effect and the index of 1/2 comes

from the diffusivity. We note that the physical interpretation of the spectral features above is

shown in Appendix C. Using DSR theory, Fleishman & Urtiev (2010) calculated the radiation

spectrum for the static magnetic turbulent field with a > 1. Such a magnetic turbulence is

expected to be generated by Weibel instability around the shock front (see Appendix D). They

claimed that the break frequency approaches the peak frequency as θdef becomes large, and

for frequency region just below the peak frequency γ2ktypc is Fω ∝ ω1/2 even for θdef � 1/γ.

The peak frequency for a > 1 is identical to a < 1 in DSR theory, which is inconsistent with

the states by Getmantsev & Tokarev (1972).

The radiation mechanism from Langmuir turbulence has been little studied compared to the

radiation from turbulent magnetic fields. The Langmuir turbulence has been pointed out to be

also generated around the shock front of the relativistic shocks (Silva 2006, Dieckmann 2005,

Bret, Dieckmann, & Deutch 2006), so it should be as important as the radiation from turbulent

magnetic field. There are a few important works about this radiation process, such as Melrose

1971 which consider the typical frequency and Schlickeiser 2003 which consider the power

of this process. Among these studies, Fleishman & Toptygin (2007a,b) have developed the

most systematic treatment of radiation from electrons in Langmuir turbulence (see references

cited in Fleishman & Toptygin 2007b for other earlier relevant studies). Their treatment is

almost the same as the DSR except for the consideration of time variability of the Fourier

components of the turbulent field (Langmuir waves). They call this radiation mechanism

”Diffusive Radiation in Langmuir turbulence” (DRL). We shortly review these results. The

wavenumber of the Langmuir waves is assumed to satisfy the condition ωp > ktypc, where

ωp is the plasma frequency. They introduce a variable ωst which is statistically averaged

”strength frequency” which resembles cyclotron frequency for magnetic field, but the electric

field strength E is used as ωst = e < E2 >1/2 /mc, where <> means ensemble average. For
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ωp > ωst, the peak frequency is γ2ωp. The spectrum just below the peak frequency is Fω ∝ ω1,

and becomes Fω ∝ ω0 in lower frequencies. For ωp < ωst, the peak frequency is also γ2ωp and

frequency region lower than the peak becomes Fω ∝ ω1/2. This index of 1/2 also comes from

diffusivity, which is the same as non-perturbative DSR. The physical explanations about them

are also shown in Appendix C.

DSR and DRL are most accepted radiation theory for the turbulent field. However, their

results are inconsistent with the prediction by Getmantsev & Tokarev (1972). On the other

hand, in recent paper about jitter radiation (Medvedev et al. 2011), they also claimed (without

confirmation) that the radiation spectra resembles synchrotron radiation when θdef > 1/γ,

which is consistent with Getmantsev & Tolarev (1972). The radiation spectra about these

fields is in the discussion. We here summarize an unexplored field we discussed above for the

radiation from a relativistic electron:

• The radiation spectra for strong deflection regime, such as 1 . a . γ for static magnetic

turbulence and ωst > ωp > ktypc for Langmuir turbulence should be investigated.

We perform the first principle numerical calculations for clarification of them. It is the goal of

this study to obtain general properties of the radiation spectra from a relativistic electron in

oscillating and spatially fluctuating electromagnetic fields.

3.3 Parameters of electromagnetic turbulences

Before proceeding to the calculations, we show our motivations for studying the radiation

spectra for these cases in astrophysical background. First we show the recent studies of Weibel

instability for magnetic turbulence.

Several particle-in-cell (PIC) simulations of relativistic collisionless shocks have been per-

formed to study the nature of turbulent magnetic fields which are generated near the shock

front (e.g., Frederiksen et al. 2004; Kato 2005; Chang et al. 2008; Haugbolle 2010). The
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characteristic scale of the magnetic fields is the order of inertial length as predicted by the

linear analysis of Weibel instability. Then, the typical scale of the turbulent magnetic field λB

is written by using a coefficient κ as

λB = κ
c

ωpeΓ
, (3.3)

where ωpe is the electron plasma frequency, and Γ is the bulk Lorentz factor of upstream fluid

at the shock rest frame. The energy conversion fraction into the magnetic fields

εB =
B2/8π

Γnmpc2
(3.4)

is 10−3 − 0.1, where B2/8π is energy density of magnetic fields, and Γnmpc
2 is the kinetic

energy density of the shell. The Lorentz factor of electrons is similar to Γ, and that κ is

typically 10 from the result of PIC simulations, the strength parameter a can be estimated as

a =
1√
2π
κεB

1/2

√
mp

me

∼ O(1− 10). (3.5)

Thus, the assumption a� 1 on which jitter radiation and DSR weak random field regime are

based is not necessarily valid when we consider the radiation from the relativistic shock region.

Therefore, a & 1 is the most important and necessary to study parameter regions.

Next we discuss the Langmuir turbulence. According to Silva (2006), the strength of

Langmuir waves generated at the shock region by two stream instability approaches non-

relativistic wave breaking limit ωp ∼ ωst. We further mention the spatial scale of Langmuir

waves. We should neither treat the Langmuir turbulence as a static field nor just an oscillating

field. The crossing time can be comparable to the period of the Langmuir waves, because

the typical spatial scale is about inertial length c/ωp, governed by the plasma frequency ωp

(Diekmann 2005). Therefore,

ωp ∼ ωst ∼ ω0 (3.6)

is supposed to be achieved in the Langmuir turbulence in the shock region. We should clarify

the radiation signatures from electrons moving in such turbulences.



Chapter 4

Method of Numerical Calculation

We use Lienard-Wiechert potential directly to calculate the radiation spectra. This method is

computationally expensive (see Reville & Kirk 2010), but it does not include any approximation

for calculation of the radiation spectra from prescribed trajectory. Therefore, this method is

suitable for studying the cases for which any approximations are difficult to adopt.

4.1 Field description

We calculate the radiation spectra for two cases. The one is magnetic turbulence generated

by Weibel instability. We treat it as a static field when we calculate the radiation spectra.

The variation timescale of the field is determined by the turnover time of an eddy. It is longer

than the crossing time of relativistic electron if we assume that the background plasma is

subrelativistic. Therefore, we can assume the magnetic field is static.

The other is Langmuir turbulence generated by two stream instability. For Langmuir

turbulence, we cannot treat the field as static, because the crossing timescale is longer than

the variation timescale of the fields. The typical scale of Langmuir turbulence is about inertial

length c/ωp, and the field oscillates with the plasma frequency ωp (Diekmann 2005). Therefore

we take into account the oscillation of the field for this case.

23
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4.1.1 Magnetic turbulence

The isotropic turbulent magnetic field is generated by using the discrete Fourier transform

description as developed in Giacalone & Jokipii (1999). It is described as a superposition of

N Fourier modes, each with a random phase, direction and polarization

B(x) =
N∑

n=1

An exp
{
i(kn · x + βn)

}
ξ̂n. (4.1)

Here, An, βn,kn and ξ̂n are the amplitude, phase, wave vector and polarization vector for the

n-th mode, respectively. The polarization vector is determined by a single angle 0 < ψn < 2π

ξ̂n = cosψne
′
x + i sinψne′

y, (4.2)

where e′
x and e′

x are unit vectors, orthogonal to e′
z = kn/kn. The amplitude of each mode is

A2
n = σ2Gn

[
N∑

n=1

Gn

]−1

, (4.3)

where the variance σ represents the amplitude of the turbulent field. We use the following

form for the power spectrum

Gn =
4πk2

n∆kn

1 + (knLc)α
, (4.4)

where Lc is the correlation length of the field. Here, ∆kn is chosen such that there is an

equal spacing in logarithmic k−space, over the finite interval kmin 5 k 5 kmax, where we take

kmax = 100 × kmin and N = 100 with kmin = 2π/Lc and α = 11/3. Since we have no reliable

constraint for value of α from observations of high energy astrophysical objects, we adopt the

Kolmogorov turbulence B2(k) ∝ k−5/3 tentatively, where the power spectrum has a peak at

kmin. Then we define a parameter which parametrizes the radiation spectra using σ and kmin

as

a ≡ eσ

mc2kmin

=
ωst

ω0

, (4.5)

where ωst ≡ eσ/mc and ω0 ≡ kminc. We call ωst ”strength omega”, which is identical to

nonrelativistic cyclotron frequency, and ω0 ”spatial omega”. The strength omega ωst accounts
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for the effect of the field strength to the radiation spectra. It is from the curvature of orbit

and beaming effects for the relativistic particles. When a particle has relativistic energy, the

radiation is concentrated in the beaming cone with an angle ∼ 1/γ, so the searchlight sweeps

the observer in the timescale of mc/eσ = 1/ωst. Therefore, this timescale is independent on

the Lorentz factor of the radiating electron. The meaning of ωst is different from the original

meaning of cyclotron frequency. Thus, we call it strength omega. The spatial omega ω0 is the

parameter which parametrizes the effect of the spatial fluctuation. Since the electron moves

nearly at the light speed, the changing rate of force direction for the electron is 2πc/λ = ω0.

It also affects the radiation spectra. The ratio of ωst to ω0, ωst/ω0 = a parametrizes the field

feature for the radiation spectra from the point of view of strength and spatial fluctuation

scale.

4.1.2 Langmuir turbulence

For Langmuir turbulence, we use 3D isotropic turbulence. If the Langmuir waves are generated

near the shock front, they may be highly anisotropic on the spot. However, we assume the

isotropic turbulence for two reasons. First, the Langmuir turbulence in large part of the

emission region would be isotropic, since Langmuir waves interact with background ions and

form the Kolmogorov type isotropic turbulence (Treumann & Baumjohan 1997). Second, the

radiation spectra for 3D and 1D turbulence are not so different except for a particular case

that the direction of radiating electrons and the wavevector is parallel, i.e., when the radiation

is linear acceleration emission. However, the perpendicular acceleration emission is dominated

as long as the direction slightly differs from the wavevector direction, since the electric field

vector is parallel to the wavevector for Langmuir wave. If the shock is ultra-relativistic, the

downstream plasma may be relativistically hot. However, we assume the mildly relativistic

shock in this thesis, and therefore the plasma in the emission region is subrelativistic, and

ignore the thermal velocity of background plasma in the dispersion relation of Langmuir waves

ω2 = ω2
p + 3/2k2v2

e,th. Thus, we use the propagating Langmuir waves with the same frequency
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ωp.

We generate 3D isotropic Langmuir turbulence by using Fourier transform description,

which is slightly modified from the description for magnetic turbulence, because the Langmuir

wave is a longitudinal wave. It is described by superpositions of N Fourier modes, each with

random phase, and direction

E(x) =
N∑

n=1

An cos
{
(kn · x− ωpt+ βn)

} kn

|kn|
(4.6)

Here, An, βn, kn, and ωp are the amplitude, phase, wave vector, frequency of the nth mode,

respectively. The definition of amplitude An is written in the same manner as the case of the

magnetic turbulence. We use 103 Fourier modes for Langmuir turbulence, and kmin = 2π/Lc,

α = 9/2 and kmax is chosen 103kmin or 10kmin. It has a peak at kmin and the spectral index is the

one for 3-dimensional isotropic Langmuir turbulence. Then we define two parameters which

characterize radiation spectra for Langmuir turbulence. The one is a, which is well known

as the strength parameter. It means the Lorentz factor of an electron which is accelerated

along the electric field on the spatial scale 2π/kmin. For γ � 1, the acceleration is almost

perpendicular to the velocity. Therefore, the local curvature radius of the orbit suffering from

perpendicular acceleration by the electric field is ∼ γmc2/(eσ). We can use the strength

parameter a in the same way as the case of the magnetic turbulence. The other is the ratio of

the frequency of the Langmuir waves to ω0,

b ≡ ωp

kminc
=
ωp

ω0

. (4.7)

For b� 1, the force direction changes with frequency ωp for all electrons. For b� 1, a change

of the force direction is mainly from the spatial fluctuation. Summarizing above, although

there are three parameters of the turbulent field (ω0, ωst, ωp), we can reduce them to two

parameters of (a, b) when our interest is on the spectral signature. We investigate the spectral

features in the parameter plane of (a, b).
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4.2 Equation of motion and radiation spectra

For the case of the magnetic turbulence, we inject isotropically 32 monoenergetic electrons

with γ = 10 in the prescribed magnetic fields, and solve the equation of motion

γmev̇ = −eβ ×B (4.8)

using 2nd order Runge-Kutta method. We neglect radiation back reaction of the electrons,

because the back reaction force is much smaller than the force ∼ eB in equation 4.8 for the

physical parameters we use. We pursue the orbit of electrons up to the time 300× Tg , where

Tg is the gyro time Tg = 2πγmc/eσ. It is much longer than the Photon Formation Time of

lowest frequency of the radiation spectra we calculate. The PFT is defined by the coherence

time for forming the photons (Reville & Kirk 2010, Akhiezer & Shul’ga 1987).

For the case of Langmuir turbulence, we inject 102 − 103 monoenergetic electrons with

Lorentz factor γinit = 10 into the generated turbulent field. The initial velocity is randomly

chosen to achieve an isotropic distribution. Next we solve the equation of motion

d

dt
(γmv) = −eE, (4.9)

by using the method which has second order accuracy for each time step. We also neglect

radiation back reaction for this case. We pursue the orbits of electrons up to 100 times of

PFT for the peak frequency photons for this case. The electrons get energy in the Langmuir

turbulence from the parallel (to the velocity) component. Spectral broadening due to finite

integration time of particle orbit is inevitable. To compromise the accurateness and computa-

tional practice, we choose the integration time as 100× PFT of the peak frequency. As we see

in the section 6, PFT for the peak frequencies of the spectra is the one of the typical timescales

of 1/ω0, 1/ωst, and 1/ωp. We choose a suitable one for each spectrum. It is sufficiently long

to resolve the spectral shape in the low frequency regions. Moreover, it is not too long to

calculate the instantaneous radiation spectra. If we pursue electrons much longer time than

the PFT, the radiation spectra correspond to an integrated spectrum of photons emitted over



28 CHAPTER 4. METHOD OF NUMERICAL CALCULATION

much longer time with changing energy. It can be understood by superposing the effects of

instantaneous spectra and electron acceleration. When we do not obtain the instantaneous

spectra, we can not discern which of them determines the spectral features. Therefore, in this

thesis we concentrate on instantaneous spectra.

We calculate the radiation spectra using the acceleration, velocity, and position of electrons.

The energy dW emitted per unit solid angle dΩ (around the direction n) and per unit frequency

dω to the direction n is computed as

dW

dωdΩ
=

e2

4πc2

∣∣∣∫ ∞

−∞
dt′

n×
[
(n− β)× β̇

]
(1− β · n)2

exp
{
iω(t′ − n · r(t′)

c
)
}∣∣∣2, (4.10)

where r(t′) is the electron trajectory, t′ is retarded time (Jackson 1999). Since we have not any

specific constraints for a and b which are realized in the high energy astrophysical object, we

sweep wide parameter range of a for magnetic turbulence, and both of a and b for Langmuir

turbulence, and study the radiation features.
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Magnetic Turbulence

We investigate the radiation spectra for 1 . a . γ . In §5.1 we describe numerical results. In

§5.2 we give a physical interpretation. In section 5.3, we summarize this chapter.

5.1 Results

First, we show the radiation spectrum for a = 3/2π in Figure 5.1. The frequency is normalized

by the fundamental frequency ωg = eσ/(γmc), and the magnitude is arbitrarily scaled. The

jagged line is the calculated spectrum, while the straight line drawn in the low frequency region

is a line fitted to a power law spectrum. The fitting is made in the range of 1− 350ωg and the

spectral index turns out to be 0.44. The straight line drawn in the high frequency region shows

a spectrum of ∝ ω−5/3 expected for diffusive synchrotron radiation for reference (Toptygin &

Fleishman 1987). The spectrum is well described by a broken power law, and the spectral

index of the low energy side is harder than synchrotron theory predicts. The peak frequency

of this spectrum is located at around 103ωg. This frequency corresponds to approximately the

typical frequency of synchrotron radiation ωsyn = 3γ2eσ/2mc ∼ 103ωg, for γ = 10.

Figure 5.2 shows the spectrum for a = 5/2π. The spectral shape changes from that of

a = 3/2π in both sides of the peak. The spectrum of the low frequency side becomes a broken

29
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Figure 5.1: Radiation spectrum for a = 3/2π, α = 11/3 and γ = 10. The straight line in the

low frequency region shows a power law spectrum with an index 0.44. The straight line in the high

frequency region is dW/dω ∝ ω−5/3 for reference. Power law index of the low frequency spectrum is

harder than the synchrotron theory predicts.

power law with a break around 10ωg, above which the spectrum is fitted by a power law with

an index of 0.33, as expected for synchrotron radiation, while below the break the index is

0.58. The high frequency side above the peak indicates an excess above a power law spectrum

dW/dωdΩ ∝ ω−5/3. It looks like an exponential cutoff. The whole spectrum is described

by a superposition of a synchrotron spectrum and a DSR broken power law spectrum. This

spectral shape is totally novel and is different from the one by described Fleishman (2010). He

reported that the spectrum is described by broken power law in the same range of a as this
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Figure 5.2: Radiation spectrum for a = 5/2π, α = 11/3andγ = 10. Two straight lines drawn in low

frequency region are fitted one to a power law spectrum in the range of 0.5 − 10ωg and 10 − 103ωg,

respectively. The power law index is 0.58 and 0.33. The latter corresponds to the synchrotron

radiation. The straight line in the high frequency region is dW/dω ∝ ω−5/3, and we see a broad

hump in the peak region, which is identified with the synchrotron spectrum with an exponential

cutoff.

work (1 < a < γ, a ∼ 102 and γ ∼ 103) (Fleishman 2010).

To confirm our inference we calculate the case of a = 7/2π, for three different values

of α, i.e., α = 14/3, 11/3 and 8/3 and the results are shown in Figure 5.3. The curved

black line is a theoretical curve of synchrotron radiation, and three straight black lines are

dW/dωdΩ ∝ ω−2/3, ω−5/3 and ω−8/3 expected for DSR theory for reference. The green line
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Figure 5.3: Radiation spectra for a = 7/2π and γ = 10, with α = 14/3, 11/3 and 8/3. Green, red

and blue lines are calculated spectra α = 14/3, 11/3 and 8/3, respectively. Straight black lines are

dW/dω ∝ ω−α+2. Curved black line is a theoretical curve of synchrotron radiation. We see effects of

different spectrum of the turbulent magnetic fields in high energy region.

corresponding to α = 14/3 reveals a clear exponential cutoff, and reveals DSR component

in only the highest frequency region. The power law index of this component in the highest

frequency region coincides with the expected value −α + 2 = −8/3. The red and blue lines

correspond to α = 11/3 and 8/3, respectively. They indicate a common feature to the green

one.
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5.2 Interpretation

We give a physical explanation of the spectra obtained in the previous section. At first, we

interpret the broken power law spectrum for a = 3/2π by using DSR theory. Next, we consider

physical interpretation of the complex shape of radiation spectrum for a = 5/2π and a = 7/2π.

Finally, we compare our work with previous studies.

To begin with, we review the spectral feature of DSR based on the non-perturbative ap-

proach for a < 1 (Fleishman 2006). The typical spectrum takes a following form: dW/dωdΩ ∝

ω1/2 in the low frequency region, ∝ ω0 in the middle frequency region, and ∝ ω−α+2 in the

high frequency region. The low frequency part and the middle frequency part are separated

at ωLM ∼ aωsyn. This spectral break corresponds to the break of the straight orbit approx-

imation due to the effect of multiple scattering (Fleishman 2006). On the other hand, the

middle frequency part and the high frequency part are separated at the typical frequency

of jitter radiation ωMH = ωjit which is estimated by using the method of virtual quanta as

ωjit ∼ γ2kminc ∼ a−1ωsyn (Medvedev 2000, Rybicki & Lightman 1979). Then, for a ∼ 1,

ωLM ∼ ωMH is achieved and the middle region may vanish. The spectrum for a . 1 becomes a

broken power law with only one break, which is located at roughly the synchrotron frequency

ωsyn. The power law index of low frequency side is ∼ 0.5 (which is harder than synchrotron

radiation), and that of high frequency side is −α + 2 = −5/3. Thus, the spectral feature for

a = 3/2π can be explained by an extrapolation of DSR non-perturbative approach for a < 1, if

we consider that the middle frequency region is not conspicuous. Although our spectral index

0.44 slightly differs from 0.5 for DSR, this index is still harder than the synchrotron theory.

The situation a ∼ 1 can be achieved at the internal shock region of GRB, so that this may be

responsible for harder spectral index than synchrotron observed for some GRBs.

Next we interpret the spectral features for a = 5/2π and 7/2π. The conceptual diagram of

these spectra for 1 < a < γ is depicted in Figure 5.4, and a schematic picture of an electron

trajectory is depicted in Figure 5.5. We explain the appearance of another break in the low
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frequency range seen at around 10ωg in Figure 5.2. On the scale smaller than λB, the electron

motion may be approximated by a helical orbit, while it is regarded as a randomly fluctuating

trajectory when seen on scales larger than λB. Therefore, for the former scale, we can apply

the synchrotron approximation to the emitted radiation. The beaming cone corresponding to

the frequency ω is given by

θcone =
1

γ
(
3ωsyn

ω
)1/3 (5.1)

(Jackson 1999). The deflection angle θ0 of the electron orbit during a time λB/c is estimated

to be θ0 = a/γ from the condition
γλB

a
θ0 = λB (5.2)

as seen in Figure 5.5. Thus, the synchrotron theory is applicable only for θcone < θ0, so that

the break frequency is determined by θ0 = θcone, and we obtain

ωbr ∼ a−3ωsyn. (5.3)

This break frequency is the same as obtained by Medvedev (Medvedev 2010). We understand

that as a is larger, break frequency becomes lower, and when a is comparable to γ, ωbr coincides

with the fundamental frequency eσ/γmc.

Next, we discuss on the high frequency radiation, which results from the electron trajec-

tory on scales smaller than λB. The synchrotron theory applies between λB/a = rg/γ and

λB. However, we should notice that electron motion suffers from acceleration by magnetic

turbulence on scales smaller than λB/a. The trajectory down to the smallest scale of 2π/kmax

is jittering, which is attributed to higher wavenumber modes as seen in the zoom up of Figure

5.5. If the field in this regime is relatively weak, i.e., α is relatively large (Figure 5.3, green

line: α = 14/3), the trajectory on the scale smaller than λB/a does not much deviate from a

helical orbit. In this case, radiation spectrum reveals an exponential cutoff, and a power law

component appears only in the highest frequency region. On the contrary, if the smaller scale

field is relatively strong, as in the case of α = 8/3 depicted in the blue line in Figure 5.3, the

power law component becomes predominant in the high frequency region, and the synchrotron
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exponential cutoff is smeared out. The intersection frequency of curved black line and straight

black lines at around 103ωg in Figure 5.3 corresponds to ωjit as seen in Figure 5.4. Since

the intersection frequency is determined by a, the frequency where the power law component

appears over the synchrotron cutoff is dependent on α. The excess from the theoretical curve

in the middle frequency region in Figure 5.3 may be explained by consideration of two effects.

One is the contribution of hidden DSR component, and the other is a range of synchrotron

peak frequency which is caused by a fluctuation of magnetic field intensity.

Fleishman reported that the spectrum for 1 < a < γ and 3 < α < 4 becomes a broken

power law (Fleishman & Urtiev 2010). Medvedev asserted that the high frequency region

of the spectrum reveals an exponential cutoff for 1 < a < γ (Medvedev 2010). Our result

indicates that an exponential cutoff plus an extra power law component appears, which is

different from Fleishman’s remark and from Medvedev’s remark on the high frequency region.

On the other hand, similar spectra to ours have been reported in Fleishman (2005) and Reville

& Kirk (2010) when a uniform field is added to turbulent field. Because the high energy power

law component arises from a turbulent spectrum over the wavenumber space, this component

does not exist when the small scale field is excited only in a narrow range of wavenumber

space. Since the energy cascade of turbulent magnetic fields should exist at least to some

degree, we regard that the higher wavenumber modes naturally exist. It depends on the set of

parameters of σ and kmax whether this high energy power law component can be seen or not.

If 2πeσ/mc2kmax > 1, this component will not be seen. If the magnetic turbulence is excited

by Weibel instability at the relativistic shocks, it is not possible for kmax to be much larger

than kmin because the wavelength of injection (λB = 2π/kmin) is only a few ten times the skin

depth at most. Therefore, the component will not be seen for a� 1 while for a ∼ O(1), this

power law component will be seen.

As for the frequency region lower than the break frequency ωbr = a−3ωsyn, Medvedev re-

marked that the spectrum is similar to small angle jitter radiation (Medvedev 2010). However,

it remains to be open if it is so for 1 < a < γ, because the assumption that the straight orbit
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Figure 5.4: Conceptual diagram of the radiation spectrum for 5 ≤ a < γ.

approximation of radiating particle is broken. To predict the exact radiation spectrum of the

frequency region lower than the break frequency, it is necessary to pursue the particle orbit to

follow the long term diffusion which is a formidable task.

5.3 Summary

We calculate the radiation spectrum from relativistic electrons moving in the small scale tur-

bulent magnetic fields by using the first principle calculation utilizing the Lienard-Wiechert

potential. We concentrate our calculation on a range of the strength parameter of 1 < a < γ.

We confirm that the spectrum for a = 3/2π is a broken power law with an index of low energy
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Figure 5.5: Cartoon showing the electron trajectory for 1 < a < γ. The radius of the guiding circle

is the Larmor radius rg = γλB/a. Low frequency photons are emitted from the motion on scales

larger than λB, while middle frequency ones from that on the intermediate scale between λB/a and

λB are basically synchrotron radiation. The spectral break at a−3γ3 in Figure 5.4 corresponds to the

break of synchrotron approximation at the scale of λB. The scale λB/a = rg/γ corresponds to the

synchrotron peak frequency. On the smallest scale down to 2π/kmax, the trajectory is approximately

straight, and jittering is responsible for the power law component in the highest frequency region in

Figure 5.4.
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side ∼ 0.5, and that some GRBs with low energy spectral index harder than synchrotron the-

ory predicts may be explained. Furthermore, we find that the spectrum for a = 7/2π takes a

novel shape described by a superposition of a broken power law spectrum and a synchrotron

one. Especially, an extra power law component appears beyond the synchrotron cutoff in the

high frequency region reflecting magnetic field fluctuation spectrum. This is in contrast with

previous works (Fleishman & Urtiev 2010, Medvedev 2010). Our spectra for a = 5/2π and

a = 7/2π are different from both of them. We have given a physical reason for this spectral

feature. This novel spectral shape may be seen in various other scenes in astrophysics. For

example, the spectrum of 3C273 jet at the knot region may be due to this feature (Uchiyama

et al. 2006).



Chapter 6

Langmuir Turbulence

In this chapter, we investigate the radiation spectra for a wide range of the field parameters

of Langmuir turbulences. By sweeping the parameter plane of a and b, we obtain general

signatures of the radiation spectra. In section 6.1, we show the numerical results. In section

6.2, we give the physical interpretations of the discovered spectral features using radiation for a

spatially uniform plasma oscillation. In section 6.3, we make a summary and some discussions.

6.1 Results

6.1.1 Short wavelength regime

First, we show the radiation spectra for b = ωp/ω0 � 1 (Figure 6.1), i.e., for the situation

where typical spatial scale is shorter than the inertial length. We set a = 0.1 to 20, and fix

b = 10−2; specifically we set ω0 = 1 and ωp = 10−2, and change ωst from 0.1 to 20, and take

kmax = 103kmin. The inequality b � 1 can be transformed to λ � 2πc/ωp, which means that

the fluctuation scale is much smaller than the inertial length. These fluctuations would be

damped by Landau damping and may not be realized in high energy astrophysical objects

(Treumann & Baumjohan 1997). However, we cannot reject the possibility that b . 1 is

39
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realized for some time span in relativistic plasmas, so that we study the spectra for b < 1. To

explore the regime for b < 1 clearly, we set an extreme value b = 10−2 � 1. An example of

the temporal variation of the Lorentz factor of an electron is depicted in Figure 6.2.
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Figure 6.1: Radiation spectra for b = ωp/ω0 = 10−2 and a = ωst/ω0 = 0.1, 5, 10, and 20. Vertical

axis is the spectral power in arbitrary unit and horizontal axis denotes frequency ω normalized by ω0.

The number of electrons used for these calculations is 160. (a) a = ωst/ω0 = 0.1, and the straight

line shows a power law spectrum with index −5/2: (b) a = 5, and the straight line shows a power

law spectrum with an index −5/2: (c) a = 10, and the straight line shows a power law spectrum with

an index 1/2: (d) a = 20, and the straight line shows a power law spectrum with index 1/3. We see

the transition from jitter radiation regime to the Wiggler radiation regime in Langmuir turbulence

(WRL).
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Figure 6.2: An example of the temporal variation of the Lorentz factor of an electron for a = 5 and

b = 10−2 (ωst = 5, ω0 = 1, and ωp = 10−2).

For a = 0.1, the low frequency spectrum is as flat as Fω ∝ ω0, and there is a break at

ω ∼ 200, and the spectrum declines with power law Fω ∝ ω−5/2 in the high frequency region.

For a = 5, the break frequency becomes higher than that for a = 0.1, and the high frequency

spectrum deviates from a power law. For a = 10, the spectrum in low frequency region becomes

hard with an index ∼ 1/2, and the spectrum in higher frequencies reveals a cutoff feature. For

a = 20, we see further different features. The spectrum in low frequency side of the peak

becomes softer, with the spectral index of about 1/3, and we see a small deviation from a

power law in the lowest frequency region. The features for these spectra can be understood

by using the analogy to the radiation theory from the stochastic magnetic field (Medvedev et

al. 2011, Teraki & Takahara 2011). Since the wavelength of Langmuir waves for b� 1 is very

short, the oscillation of the electric field can be neglected in the particle crossing time of the

wavelength. In fact, b� 1 is also written by λ/c� 2π/ωp. The crossing time λ/c corresponds
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to the PFT of the typical frequency.

As explained above, we can use the straight analogy to the radiation theory of the stochastic

magnetic fields for the radiation spectra from Langmuir turbulence for b < 1 by substituting

the electric field strength E with magnetic field strength B. For a < 1 and b < 1, we can

use the radiation theories of the DSR and jitter radiation theory (Fleishman 2006, Medvedev

2006). On the contrary, for a > 1 and b < 1 jitter radiation of strong deflection regime

can be applicable (Medvedev et al. 2011, Teraki & Takahara 2011). We call a < 1 and

b < 1 regime as ”jitter radiation” regime because the jitter radiation is basically perturbative

theory for a < 1. We call the radiation for a > 1 and b < 1 regime as ”Wiggler Radiation in

Langmuir turbulence”, or ”WRL” in short. Although the Wiggler radiation is not the radiation

mechanism from the stochastic field but that for a fixed field, it has a common picture that

the observer is in and off the beaming cone in the course of time.

First, we describe the signature of the radiation spectra of jitter radiation or Diffusive

Synchrotron Radiation. The radiation signatures are determined by acceleration perpendicular

to the motion, and the observer is always in the beaming cone, which is the same situation as

the Langmuir turbulence for a . 1 and b < 1. For a� 1, the spectrum is written by a broken

power law Fω ∝ ω0 in the low frequency region and Fω ∝ ω−µ+2 in the high frequency region.

The break frequency is ∼ γ2ω0 = γ2kminc. For a ∼ 1, while the break frequency remains the

same as γ2ω0, the multiple deflection effect comes into play in the spectral features near the

break frequency. The spectrum in the low frequency region becomes Fω ∝ ω1/2. Since the

multiple deflection makes the angle between observer direction and velocity larger than the

beaming cone angle 1/γ, the observer sees the radiation over the timescale which is determined

by the deflection condition. Fleishman supposed that the angle changes diffusively. The break

frequency of aγ2ωst is calculated from the angle diffusion (Fleishman 2006). The spectral index

of 1/2 comes from the diffusivity, too.

Next, we describe the signatures for strong deflection regime of a � 1. For magnetic

turbulence, the spectral shape resembles synchrotron radiation in the middle frequency region
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and deviations from it would be seen in low frequency region and highest frequency region

(Teraki & Takahra 2011). The peak frequency of γ2ωst is from the sweeping of the beaming

cone on the observer. The picture is same as the synchrotron radiation. For short wavelength

regime ω0 � ωp of Langmuir turbulence, the physical picture is the same as this, because the

spatial fluctuation dominates the changing rate of the deflection angle. A single deflection

angle is ∼ eEλ/γmc2, which is larger than 1/γ for a = ωst/ω0 = eσ/mc2kmin > 1. As a

result, the beaming cone sweeps out of the observer within one deflection. The intensity of the

radiation off the beaming cone is weak. Therefore, the timescale which sweeps the observer

∼ 1/ωst corresponds to the PFT of the typical frequency. Considering the photon chasing

effect, we get the peak frequency ∼ γ2ωst. The spectral break in the low frequency region

would correspond to the deviation from local circular orbit, but the numerical error from finite

integration time is also becoming large in the lower frequency region. We do not discuss this

point further here, since it is not the main point of contents in this chapter. The power law

component in the highest frequency region comes from the smaller scale part of turbulence.

It is the same as the spectra of jitter regime. We note here that the power law component in

high frequency region cannot be seen for a = 10 and a = 20. The reason may be as follows.

In contrast to the magnetic turbulence, the energy of radiating electrons changes for a & 1.

Therefore, the high frequency region is determined by only the later part of integration time,

because the peak frequency is ∼ γ2ωst for a > 1, and the electrons get energy and radiate

higher energy photon in later time. The power law component for the highest frequency region

in our calculation is hidden by the component that small numbers of electrons with larger

energy radiate by Wiggler mechanism.

Finally, we consider effects of the energy change in WRL regime, which is the one of the

different points from the magnetic case. Based on an example of the change of Lorentz factor

is depicted in Figure 6.2, we estimate the energy change in PFT 1/ωst for peak frequency. The
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PFT is 1/ωst. The change of Lorentz factor is estimated as

∆γ = eE · c
ωst

1

mc2
∼ 1. (6.1)

Therefore, the change of the Lorentz factor in this timescale is smaller than 1. Thus, we do

not need to consider the energy change in PFT for peak frequency. However, for sufficiently

large a, we have to take it into account for lower frequency spectrum. We calculate the spectra

for modest a in this chapter, so we omit this problem. It will be studied in future works.

6.1.2 Long wavelength and weak regime

Next we show the radiation spectra for a < 1 and b > 1 (Figure 6.3), i.e., a situation where

long wavelength turbulence with weak amplitudes dominates; the spectra for b = 0.1 and 1 are

also depicted for comparison. An example of the temporal variation of the Lorentz factor of an

electron is depicted in Figure 6.4. Firstly, we consider the meaning of the parameters of a < 1

and b > 1, which correspond to ωp > ω0 > ωst. In this regime, the changes of the direction of

acceleration are mainly due to wave oscillation, rather than the spatial fluctuations because the

crossing time is longer than the oscillation time. Moreover, θdef < 1/γ is derived from b > a.

Therefore, we can regard the orbit as straight in the time scale of plasma oscillation 1/ωp.

The condition b > 1 can be transformed to λ > 2πc/ωp, which means that the inertial length

is shorter than the wavelength. Therefore, this regime is likely to occur in the astrophysical

objects.

We set ω0 = 1, ωst = 10−2 and change ωp from 0.1 to 10, so that a = 10−2 and b = 0.1 to 10,

and take kmax = 103kmin. As was discussed in the previous subsection for b = 0.1, the spectrum

shows jitter radiation signature. The peak frequency is γ2ω0 and Fω ∝ ω0 in the low frequency

region, and Fω ∝ ω−5/2 above the peak frequency reflecting the spectrum of the turbulent

electric field E2(k) ∝ k−5/2. As b becomes larger, the peak shifts to higher frequency. For

b = 10, the peak frequency is ∼ 103, which is identified with γ2
initωp. The spectral index of low

frequency side is ∼ 1. This feature coincides with the result of DRL theory (Fleishman 2006).
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We call this regime ”DRL regime”. The DRL theory predicts the spectral shape for a < 1 and

b > 1 as follows. The peak frequency is 2γ2ωp with an abrupt cutoff in the higher frequency

side and a power law component emerges in the highest frequency region for kmax � ωp/c. In

the low frequency side, the spectrum becomes Fω ∝ ω1.

The peak frequency is determined by the time scale of plasma oscillation. The shortest

timescale of the electron motion is 1/ωp, and the observer located along the initial velocity

direction can see this radiation, because the orbit is regarded as straight in this time scale as

we showed above. We consider Doppler boosting, and we get the peak frequency 2γ2ωp in the

observer frame. The origin of the power law component in the highest frequency region is same

as jitter radiation. The hard spectral index in the frequency region lower than peak of 1 is from

the effect of the electrons which have the same oscillating frequency ωp move different angles

to the observer (Fleishman 2007a,b). It is regarded as the emission spectrum from an electron

integrated over the solid angle, which can be understood in an analogy to the Undulator theory

(Jackson 1999), although the force direction changes in this case not spatially but temporally.

When the particle mean velocity and the wavenumber are fixed, that makes no difference for

the radiation spectra. The peaky shape of the spectra is the most remarkable feature of the

spectra for DRL case. A difference is that the wave number is a vector, while the frequency is

a scalar. For DSR, the electron feels spatial fluctuation with wavenumber along the velocity

k · v/v, therefore the low frequency spectrum becomes flat. On the other hand, for DRL,

all electrons feel the same frequency of ωp for the Langmuir turbulence (c.f. Fleishman &

Toptygin 2007a,b, Medvedev 2006).

6.1.3 Long wavelength and strong regime

The remaining interesting regime of a > 1 and b > 1 has not been well investigated. In

this regime temporal variation of the electric field dominates and electron orbits significantly

deviate from rectilinear motion. These parameters mean that the wavelength is longer than

the inertial length and that the typical scale of PFT is mc2/eσ. We set a = 102, b = 20 to 800,
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Figure 6.3: Radiation spectra for a = 10−2 and b = 0.1, 1, 5, 7, and 10 from top to down in low

frequency range. The number of electrons used for these calculations is 160. The straight lines show

a power law spectrum with index 1 and −5/2. We see the transition from jitter radiation to DRL as

b increases.

so that a/b = 0.125 to 5, and ω0 = 1. We set ωst = 102, and we change ωp from 20 to 800, and

kmax is chosen to be 10kmin here. We show the interesting results for a > 1 and b > 1 (Figure

6.5). An example of energy change for a = 100 and b = 20 is depicted in Figure 6.6.

We examine two regimes of a < b and a > b separately. For a < b, the peak frequency

is ∼ γ2
initωp. The spectral index of low frequency region is 1, and cutoff feature can be seen

above the peak. This region is regarded as the DRL regime from these signatures. For a < b,

i.e., ωst < ωp, the particle is not deflected by large angle because the direction of the electric

field changes in a time shorter than the time for which the beaming cone sweeps the observer.

We set kmax = 10kmin, therefore, a power law component in high frequency region is not seen

at all.
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Figure 6.4: An example of the temporal variation of the Lorentz factor of an electron for a = 10−2

and b = 10 (ωst = 10−2, ω0 = 1, and ωp = 10).

On the contrary, different features emerge for a > b. The peak frequency becomes larger

than γ2
initωp. Moreover, the spectra below the peak frequency become softer, the index changes

from 1 to 1/3. The energy change of electrons may cause the change of the peak frequency, but

it cannot explain the soft spectrum. Rather, it would be naturally understood that the peak

frequency is γ2ωst and Fω ∝ ω1/3 by using the analogy of the Wiggler radiation. We consider

that we should use WRL theory not only for a > 1 > b, but also for a > b > 1, because

the deflection angle in one deflection is also larger than 1/γ for this case. This is in contrast

to the DRL theory, which predicts the same spectral signatures for the parameter range of

a > b > 1 as for b > a > 1. According to DRL theory, the peak frequency is γ2ωp even if

a > b, and the spectral index below the peak is 1/2. Thus, our numerical calculations reveal

new features which have not been known previously for Langmuir turbulence. We ascribe

that the parameter regime a > b > 1 is in the WRL regime in a − b plane. To clarify the
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Figure 6.5: Radiation spectra for a = 102 with b = 20, 90, 400, and 800 from top to down. The

number of electrons used in these calculations is 800. The straight lines show the power law spectra

with index 1/3 and 1. We see the transition from the DRL to WRL as b decreases.

spectral features for a > b > 1 in more detail, and to confirm our consideration, we examine

the radiation from a relativistic electron moving in pure plasma oscillation in the next section.

6.2 Pure plasma oscillation

In this section, we investigate the emission of a relativistic electron suffering from pure plasma

oscillation in order to discuss the interpretation of the features of the radiation spectra for

a > b > 1. To clarify the origin of the peak frequency γ2ωst, we set a simple configuration

of the electric field, where electron motion is deterministic compared to stochastic character

in turbulent fields. We calculate the electron velocity analytically and the radiation spectra

numerically. By comparing the motion and spectra, we interpret the mechanism which deter-
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Figure 6.6: An example of the temporal variation of the Lorentz factor of an electron for a = 102

and b = 20 (ωst = 102, ω0 = 1, and ωp = 20).

mines the peak frequency. Lastly we consider the radiation spectra from the turbulent field

by using these results.

We use a single Langmuir wave which has infinitely large wavelength k = 0, in other words,

ω0 = 0. Therefore, it is a pure plasma oscillation. We set E = (Ex, 0, 0) with

Ex = E0 cos(ωpt). (6.2)

We characterize the field by using a single parameter of

η ≡ ωst/ωp. (6.3)

We inject an electron along the z-axis at t = 0 with the initial Lorentz factor γinit and solve

the equation of motion (4.9). Therefore, the orbit is determined by γinit and η. Here, we define

α for convenience

α ≡
(
γinit

η

)2

. (6.4)
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This parameter characterizes the motion. Solving the equation of motion, we get the momen-

tum

px = −eE0

ωp

sinωpt

pz = const

(6.5)

with pz = γinitmcβinit. We note that the z-component of the momentum is constant, but the

z-component of the velocity is not constant. The Lorentz factor behaves as

γ = η
√
α + sin2 ωpt, (6.6)

For α � 1, the Lorentz factor is always nearly γinit, while for α . 1, the Lorentz factor

significantly oscillates. Using these equations, we can write the velocity as

βx = − sinωpt√
α+ sin2 ωpt

βz =

√
α− 1

η2√
α + sin2 ωpt

.

(6.7)

Since the velocity is a periodic function, we can define the mean velocity by β̄ = ωp

2π

∫ 2π/ωp

0
βzdz.

In the limit of α → ∞ the electron motion can be approximated by a harmonic oscillation

to the x direction aside from a constant velocity along the z-axis. As α decreases but it still

much larger than unity, the motion can be approximated by a figure of eight when the mean

motion is subtracted. As α decreases further, the motion becomes increasingly nonlinear. To

get a clear view of the motion, it is convenient to transform to the mean velocity frame at the

next step. The velocity in the mean velocity frame is given by

β′
x = −η

γ̄

sin θ

η
√
α + sin2 θ − β̄

√
γ2

init − 1

β′
z = −

√
γ2

init − 1− β̄η
√
α + sin2 θ

η
√
α + sin2 θ − β̄

√
γ2

init − 1
,

(6.8)

where θ = ωpt. The mean velocity β̄ cannot be represented elementarily in a general form.

Then, we take the parameter α � 1 and approximate the motion hereafter. We note that
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α� 1 means γinit � η, therefore η can be much larger than 1 when γinit � 1. We expand the

Lorentz factor and the velocity, and get the mean velocity and the mean Lorentz factor in the

lowest order of α.

β̄ = βinit(1−
1

4α
)

γ̄ =
γinit√
1 + η2

2

(6.9)

For η � 1, γ̄ is similar to γinit, while for η � 1, γ̄ =
√

2γinit/η is much smaller than γinit. Using

this approximated velocity, we calculate the maximum Lorentz factor in the mean velocity

frame, to clarify the fact that the radiation signatures depend on η as

γ′max =
γinit√
1 + η2

2

[√
γ2

init + η2 − βinit(1−
1

4α
)
√
γ2

init − 1

]
. (6.10)

For η � 1,

γ′max = 1 +
η2

2
. (6.11)

The motion in this frame is non-relativistic, therefore, the radiation in this frame is dipole

radiation. On the other hand, for η � 1, the maximum Lorentz factor is

γ′max =
3
√

2

4
η. (6.12)

Therefore, the motion is relativistic even in this frame and the radiation spectrum consists of

higher harmonics, because β′ approaches 1. It should be noted that for η = 1, the motion in

the mean velocity frame is mildly relativistic with Lorentz factor γ′max = 1.02, and β′ = 1/5.

We can see that the transition from non-relativistic harmonic motion to relativistic motion

occurs around η ∼ a few from this fact.

The trajectory in the mean velocity frame is obtained by integrating the approximated

velocity in the original frame over t and by transforming to the mean velocity frame

x′ =
c√
αωp

cos θ

z′ =

√
β2

initη
2

32(2 + β2
initη

2)

c√
αωp

sin 2θ,

(6.13)
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where θ = ωpt. Basic features of the motion are the same as discussed above in the original

frame. However, the parameter which characterizes the motion is not α but η in this frame.

The trajectory is a straight line for η � 1 and a figure of eight for η & 1. Next, we discuss

the phase of oscillation of the electron to consider the characteristic radiation frequency in the

mean velocity frame. The phase θ is written by

θ = ωpt = ωpγ̄(t
′ +

β̄

c
z′). (6.14)

The phase depends on not only t′, but also z′. This phase shift from γ̄ωpt
′ is not negligible

compared to 2π. It reaches ∼ 1/4 for η → ∞, even if η = 1 it is ∼ 1/12. However, the

fundamental oscillation frequency is determined by the period T = 2π/γ̄ωp. Since z′ is a

periodic function and z′ = 0 for θ = 2π and θ = 0 as seen in equation (6.8). Lastly we note

that the phase change rate dθ/dt′ is not constant. Summarizing above, the motion in the mean

velocity frame is a simple non-relativistic harmonic motion for η � 1, and relativistic motion

on the figure of eight trajectory, and the frequency for both case is γ̄ωp. It should be noted

that the velocity is dependent on η and the characteristic radiation frequency changes with η

Next we show numerically calculated radiation spectra from the electron and their features

are interpreted in terms of the properties of the orbit. We fix ωst = 1, and change ωp to change

the parameter η. The observer is on the z-direction. We calculate radiation spectra using

much longer integration time than the PFT, because the electron moves perfectly periodically.

As a consequence, the spectra show very sharp features, which makes it easier to understand

the relation between spectral features and orbit. First, we show the spectrum for η = 10−3

(ωp = 103, Figure 6.7(a)). We see a sharp peak like a delta function at the frequency 2γ2
initωp =

2× 105. This is understood in terms of the motion of the electron in the mean velocity frame.

For η � 1, in the mean velocity frame, electron motion is a non-relativistic simple harmonic

motion with the frequency ∼ γ̄ωp. Therefore, the radiation is the dipole radiation with the

frequency of γ̄ωp. Since γ̄ ∼ γinit for η � 1, the radiation frequency in the observer frame

is 2γ2
initωp. Thus, we ascribe the frequency 2γ2

initωp in the radiation spectra of perturbative
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regime (ωst < ωp) to the Doppler shifted dipole radiation. Next we show the spectrum for

η = 0.01 (ωp = 102, Figure 6.7(b)). We can see the higher harmonics of 2γ2
initωp = 2 × 104.

It is from effects of retarded time, as is clearly seen in the mean velocity frame. However, the

effect is very weak, as the power of the second harmonics is about 1011 times smaller than the

fundamental mode in the frequency resolution of this calculation. The ratio of the power of

the second harmonics to the fundamental mode is proportional to β′2, so the second harmonics

is much smaller than the fundamental mode in this case.

For η ∼ 1, the spectral shape changes significantly. First, the higher harmonics stand

more strongly, because β′ approaches 1. Many harmonics are as strong as the fundamental

mode for η = 1 (Figure 6.7(c)), and the envelope of the peaks of the harmonics shows an

exponential cutoff. We note that the spectrum in the frequency region higher than 5000 comes

from numerical error. Second, the frequency of the fundamental mode deviates from 2γ2
initωp,

because the difference between γ̄ and γinit becomes larger. The mean Lorentz factor γ̄ is√
2/3γinit for η = 1, thus the frequency of the fundamental mode in the original frame is

2γ̄2ωp = 133. The difference between 133 and 2γ2
initωp = 200 is small, but we can discern it in

Figure 6.7(c). Next we discuss the peak frequency (cutoff frequency) for η > 1. We show the

spectra for η = 1, 3, and 5 in Figure 6.8. The fundamental frequency is 133 for η = 1, 12 for

η = 3, and 3 for η = 5, but the cutoff frequency around a few hundreds does not change. We

see the cutoff frequency is not of the fundamental mode, but it is determined by the higher

harmonics for η > 1. The radiation spectra in the observer frame also can be derived by

regarding it as a Doppler boosted emission. However, since the mechanism which determines

the peak frequency is the same as the Wiggler radiation we can understand the peak frequency

more easily by considering the PFT in the observer frame. The condition η = ωst/ωp > 1 is

equivalent to that PFT of the typical frequency in Wiggler mechanism, where 1/ωst is shorter

than the oscillating time 1/ωp. On the other hand, the Lorentz factor relevant for the peak

frequency is not γ̄, but γinit, because the beaming cone sweeps the observer in the phase around

2nπ, where n is a natural number. We note that the change of the Lorentz factor in the time
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Figure 6.7: Radiation spectrum from an electron with γinit = 10 moving in the oscillating field.

Horizontal axis is frequency normalized by ωst = 1. (a) η = ωst/ωp = 10−3, (ωp = 103) (b) η = 10−2,

(ωp = 102) (c) η = 1, (ωp = 1) (d) η = 500, (ωp = 2 × 10−3), and the straight line shows a power

law spectrum with index 2/3. The fundamental mode in panels (a) and (b) are γ̄2ωp ' γ2
initωp, while

that in (c) is γ̄2ωp = 133 < γ2
initωst. We see the strong higher harmonics in (c) and (d).

scale of 1/ωst is 1 at most, as seen in equation (6.1). As a result, the cutoff frequency is

∼ γ2
initωst. In this way, we get a clear understanding of the mechanism of the peak frequency

shift around η ∼ O(1).

Here, we compare the results in this section with the radiation spectra obtained in the pre-

ceding section. The case of Langmuir turbulence with a > b > 1 (ωst > ωp > ω0) corresponds

to the case of pure plasma oscillation with η > 1, since η = ωst/ωp and ω0 = 0 for pure plasma
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Figure 6.8: Radiation spectra for η = 1, 3, and 5 (ωp = 1, 1/3, and 1/5) from top to down. A factor

of 102 is multiplied to the spectrum for η = 1, and 10−2 is multiplied for η = 5. The fundamental

frequency is 2γ̄2ωp. It is 133 for η = 1, 12 for η = 3 and 3 for η = 5. The cutoff frequency is a few

times of γ2
initωst = 100, which does not depend on ωp explicitly.

oscillation. Moreover, the approximation we used in pure plasma oscillation of γinit > η is

also applicable for the case of Langmuir turbulence, since η = a/b ≤ 5 and γinit = 10 for the

spectra shown in Figure 6.5. We have shown that the peak frequency is γ2
initωst, and it consists

of the higher harmonics of γ̄2ωp for pure plasma oscillation with η > 1. Therefore, the peak

frequency for the Langmuir turbulence with a/b > 1 in Figure 6.5 is interpreted as γ2ωst, and

it naturally explains the fact that the peak frequency is larger than γ2
initωp. We make two more

discussions about this issue here, the one is the validity for application of the result for pure

plasma oscillation to the case for the Langmuir turbulence, and the other is the Lorentz factor

for the peak frequency for the case of Langmuir turbulence. First we discuss the validity for

the application of Wiggler mechanism to case of the Langmuir turbulence. Even though the
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electric field is turbulent, the electric field does not change over the timescale 1/ωst because

the timescale of 1/ωst is the shortest in the three timescales of 1/ωst, 1/ωp, and 1/ω0. In other

words, the photon formation length of the typical frequency for the Wiggler radiation ∼ c/ωst

is shorter than the spatial fluctuation scale ∼ c/ω0 and inertial length ∼ c/ωp. Therefore, the

electric field for the radiating electron over the timescale 1/ωst is roughly constant, and the

beaming cone sweeps observer in one deflection. As a result, the peak frequency is determined

by Wiggler mechanism. Next we discuss the Lorentz factor of electrons which radiate peak

frequency. The Lorentz factor of electrons varies with time for the turbulent electric field.

Because the integration time for the calculation is 100 times larger than 1/ωst, the electron is

accelerated chaotically. The peak frequency consists of the superposition of the radiation from

the electron in different time. The electron emit the peak frequency photon when the beaming

cones sweep the observer, which is realized stochastically. Therefore the Lorentz factor is not

pre-determined for the case of the turbulent electric field. However, for this case of a/b ≤ 5 we

note that the change of Lorentz factor in the integration time is not very large as seen in Figure

6.6, therefore we can regard the Lorentz factor γ ∼ γinit. Lastly we consider the spectral index

for the Langmuir turbulence with a > b > 1. As we see above, the spectral index for a > b > 1

is not 1 predicted by perturbative DRL nor 1/2 predicted by the angle diffusion effect. We

regard that the spectral index is around 1/3, because the radiation mechanism is identified

as Wiggler mechanism, and the angle integrated spectral index is 1/3 in Wiggler mechanism.

Summarizing above, we confirm that the peak frequency is ∼ γ2
initωst and the spectral index

in low frequency side of the peak ∼ 1/3 for the Langmuir turbulence with a > b > 1 and

a/b = O(1).

Lastly for completeness in the parameter range of η, we investigate the example of the

extreme case of η � γinit. For η > γinit, the motion becomes strongly nonlinear and cannot

be treated analytically. Thus, we show numerically calculated electron orbit. We show the

radiation spectra and the orbit for η = 500 > γinit (Figure 6.7(d), Figure 6.9). As we expected,

the peak frequency is ∼ γ2
initωst. We note that the spectral index of 2/3 is the same as the
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Wiggler radiation when the observer is located in a particular direction, i.e., the spectrum

is not the angle integrated spectrum. This spectral index is evidence for the spectral index

of 1/3 for the case of turbulence with a > b > 1 for which angle integrated spectrum is

calculated. The Lorentz factor changes from 10 to O(100), but γinit is relevant to the observer

situated at z-axis. In other words, the beaming cone sweeps the observer when γ ∼ γinit in

the present geometry. The Lorentz factor relevant to each observer oriented in different angles

is significantly different to each other. Moreover, in general the energy change in the PFT of

peak frequency becomes larger than mc2, because the electric force in some phase of oscillation

accelerates the electron linearly, and the curvature radius becomes larger. Thus, we have to

consider the linear acceleration emission in this case. We consider the spectral flattening in

the lowest frequency region of Figure 6.7d. The low frequency flattening should come from the

condition that the observer sees the strong emission for a longer time than the synchrotron

radiation in a uniform magnetic field. Since the orbit for the present case is more elongated to

the x direction as seen in Figure 6.9, low frequency emission is observed to be enhanced from

the z-axis. Although this is a trivial spectral shape, this feature has not been noticed before.

This signature may play a role in the turbulent case. Thus, we draw the line on a/b = γ and

a = 1, and divide the a > b > 1 region. We call the radiation for this parameter range as

”non-linear trajectory” radiation. This part of the spectra from an electron moving in the

3D turbulent electric field is determined by the chaotic trajectory. The generalization of the

features of this regime is a future work.

Summarizing this section, we have considered the motion and radiation in a single mode

plasma oscillation. We clarify that the cutoff frequency for η > 1 (ωst > ωp) is γ2
initωst, which

consists of higher harmonics of the fundamental frequency of γ̄2ωp. It is from the effect that

the beaming cone sweeps the observer, in the same way as the Wiggler radiation. Using

this result, we interpret that the peak frequency for 3D Langmuir turbulence for a > b > 1

(ωst > ωp > ω0) is γ2ωst, where γ is determined by the acceleration. The shallower spectrum

for a > b > 1 can be explained by WRL mechanism. Lastly, we show numerically calculated
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x

z

Figure 6.9: Electron orbit for η = 500. Vertical axis is x, and horizontal axis is z. The thick line

shows the orbit for the radiating electron, while the thin line shows a sine curve for comparison.

radiation spectra for the extreme case of η � γinit. It shows Wiggler like spectra in the middle

and high frequency region, while the flattening can be seen in the low frequency region. It is

from the effect of elongated trajectory to the electric field direction. The radiation signatures

are summarized as a chart in the a− b plane in Figure 6.10.

6.3 Discussion & Summary

We have calculated the radiation spectra from relativistic electrons moving in a Langmuir

turbulence by using first principle numerical calculation. We characterize the radiation spectra

by two parameters. The one is a = ωst/ω0, where ωst = eσ/mc is the strength omega, and

ω0 = 2πc/λ is the spatial omega. The strength omega accounts for the effect of the field

strength to the radiation spectra, and the spatial omega accounts for the effect of spatial
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Figure 6.10: Chart of the radiation regimes. Horizontal axis is a = ωst/ω0 = eσ/mc2kmin, and

vertical axis is b = ωp/ω0. For the jitter regime with a < 1 and b < 1, the radiation spectra are

determined by the spatial fluctuations, because ω0 is the largest of the three. The typical frequency

for this case is γ2ω0. For b > a > 1, i.e., ωp > ωst > ω0, the radiation spectra are represented by DRL

theory, and typical frequency is γ2ωp. The line b = a divides the DRL region and WRL region, and

the spectral features for the WRL regime a > b > 1 are newly clarified in this chapter. The typical

frequency is γ2ωst and the spectral index of frequency region lower than the peak is ∼ 1/3, in the

same way as synchrotron radiation. For a > γ and a > γb, the orbit of a radiating electron depicts

non-linear trajectory, and its signature appears at the low frequency region of the spectrum.
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fluctuation with a typical scale of λ. The other is b = ωp/ω0, where ωp is the plasma frequency,

which accounts for effects of the time variability of the waves. We investigate the spectral

signatures in the a − b plane (Figure 6.10). For a < 1 and b < 1, the spectral features are

the same as those of jitter radiation or Diffusive Synchrotron Radiation. For b > a > 1 and

b > 1 > a, the theory of the Diffusive Radiation in Langmuir turbulence is confirmed, where

time variability plays a primary role. For a > b > 1, the spectra show previously unknown

features. In this regime, the peak frequency is ∼ γ2ωst, which is higher than the predicted

frequency γ2ωp from the DRL theory. The spectral index of the frequency region lower than

the peak is ∼ 1/3. These features are explained by the Wiggler mechanism. To clarify the

radiation features in this regime, we calculate the radiation spectra from an electron moving

in an oscillating electric field, i.e., for vanishing spatial omega. We analytically calculate the

motion of the electron, and numerically calculate the radiation spectra form this electron.

We show that for η = a/b & 1, the spectrum around the peak frequency consists of the

higher harmonics of the fundamental mode, by considering the radiation in the mean velocity

frame. The electron motion becomes relativistic for η > 1 even in this frame, so that strong

higher harmonics photons are emitted because of the retarded time effect. As a result, the

spectra in the observer frame consists of the higher harmonics of γ2ωp. The peak frequency is

characterized by γ2ωst, which is understood by the analogy of the Wiggler radiation.

The feature that the radiation spectra from Langmuir turbulence have a wide range of

spectral indices can be important for high energy astrophysical objects, in particular gamma

ray bursts. The emission mechanism of GRB is not settled for now. The spectral indices of

low frequency side of the Band function are distributed as a Gaussian with the central value

of 0. Non-negligible number of GRBs have spectral index harder than the theoretical limit

for synchrotron radiation 1/3. The photospheric emission models can overcome this difficulty,

but it also has another difficulty. The low energy spectral index of photospheric emission is 2,

which is too hard to make it soft to the observe spectral indices ∼∼ 0. On the other hand,

the radiation mechanism from Langmuir turbulence in this chapter has some advantages. Not
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only the spectral index is harder than the synchrotron radiation and it can reproduce very

hard spectra of observed GRB (Fleishman 2007b), but also it may explain a wide range of

spectral indices. Because the parameters of a and b are likely to have a value around 1 near

the shock front (Silva 2006, Dieckmann 2005), so that the radiation spectra change drastically

around these parameters.





Chapter 7

Application to the Gamma Ray Flares

of the Crab Nebula

7.1 Introduction

In this chapter, we show a jitter radiation model of Crab gamma ray flares. As we see in

chapter 2, the observational results of these flares can not be explained by the standard model

of pulsar wind nebulae. The radiation mechanism which is supposed in standard model in this

energy range (around 100 MeV) is the synchrotron radiation. We consider a model in which

the radiation mechanism changes from synchrotron radiation to jitter radiation in flare states.

We first rewrite observational features of the Crab flares for later convenience.

• The flares occur about once in a half year, the flux doubling timescale is around 8 hours,

and duration time is a few weeks.

• The peak energy is as high as 375MeV > Ec.

• There seem to be no counterparts in other energy ranges.

• They sometimes show very hard spectrum as Fω ∝ ω1.08±0.16

63
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NEBULA

We next introduce several other models which have been proposed to overcome the crucial

problem of Ec. The obvious possibility is relativistic beaming effect. In the standard scenario

of pulsar wind nebulae (e.g. Kennel & Coroniti 1984), the bulk speed of nebula region is

nonrelativistic, but a possibility of the emission regions having relativistic speed was discussed

from various aspects. (Komissarov & Lyutikov 2011, Bednarek & Idec 2011, Yuan et al. 2011,

Kohri et al. 2012, Clausen-Brown & Lyutikov 2012). Another possibility is a separation

between the acceleration region and emission region (Uzdensky et al. 2011, Cerutti et al.

2012, 2013). They considered the acceleration by the electric field on a reconnection sheet.

The magnetic field on the reconnection sheet is much weaker than outside the sheet, and

electrons can be accelerated by the electric field suffering from much weaker radiation loss

and achieve a larger Lorentz factor. In somewhat different view point, Bykov et al. (2012)

considered effects of inhomogeneities of the magnetic field strength. The highest Lorentz

factor of electrons is limited by the mean strength of magnetic field, and the highest energy

emission comes from small regions where the magnetic field is strongest. The spatial scale of

the acceleration region is the same order of the Larmor radius of the highest energy electrons

rL ∼ 2× 1017
(

γ
1010

) (
B

10−4G

)−1
cm, while the scale of the emission region is as small as ctfluc ∼

1015cm or ctdur ∼ 3 × 1016cm. If the magnetic field varies by a factor of 3 in a small region,

the emission energy can be higher than Ec in this case.

A common feature of these models is that the radiation process is considered to be syn-

chrotron radiation. In contrast, we consider yet another possibility that the magnetic fields

become turbulent on very small scales, and radiation process changes from synchrotron radi-

ation to jitter radiation. The photon energy of jitter radiation can be higher than Ec in this

situation (Fleishman 2006). For the jitter radiation, the typical frequency is determined by

the scale λB of the turbulent magnetic field. We suppose that this scale is much smaller than

2πmc2/eB and that the electrons move approximately straightly. The typical frequency is γ2

times the inverse of the timescale that the electrons move across λB, and

ωB ∼ γ22πc/λB. (7.1)
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Therefore, photons with frequencies higher than γ2eB/mc can be emitted if the spatial scale

of the turbulent magnetic field is smaller than 2πmc2/eB.

In section 7.2, we explain possibilities to create the flares by jitter radiation and discuss

the flare energetics and spectra. In section 7.3, we discuss differences from other models. We

summarize this chapter in section 7.4.

7.2 Jitter radiation model

7.2.1 Small scale turbulence

When λB < 2πmc2/eB, in other words, when the strength parameter

a ≡ eBλB

2πmc2
(7.2)

is smaller than 1, jitter frequency is larger than synchrotron frequency. Using the condition

for jitter approximation of a < 1, we can write the strength of magnetic field of the emission

region as

B < 1× 10−3(
λB

107cm
)−1G. (7.3)

We suppose that the acceleration site for the flares is near the shock front. We tentatively

assume that the magnetic field becomes turbulent in a small part of the acceleration region,

though we consider later that the size of them is same order. The Lorentz factor of accelerated

electrons which emit the highest energy synchrotron photons ∼ 100MeV in a quiescent state is

thought to be ∼ 1010 and the average magnetic field strength of ∼ 10−4G (Kennel & Coroniti

1984, De Jager & Harding 1992, Atoyan & Aharonian 1996, Tanaka & Takahara 2010). The

required scale of turbulence to meet the condition a < 1 is λB < 108cm when magnetic field

strength is 10−4G. On the other hand, the required scale to emit flare photons with energy

∼ 400MeV by the highest energy electrons through the jitter radiation, the required scale of

turbulent magnetic field is ∼ 3× 107cm.
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NEBULA

We note that the wavelength of the striped wind of the Crab pulsar (λsw ≡ c × 33ms ∼

109cm) is around the required length. Our picture of the flares is expressed as follows. When al-

ternating magnetic fields are injected into the acceleration site, fluctuations with scales shorter

than λsw are generated through compression or transformation to some type of waves. The

highest energy electrons feel the small scale magnetic fields, and radiate high energy photons

by jitter mechanism. In the quiescent state this mechanism may not work, because the density

in the pulsar wind is very low, and the small scale turbulent field is suppressed, as we see in

the next paragraph. Here we consider here how the small scale magnetic field can be generated

when the flares occur. In general, the pulsar wind fluctuates temporarily and spatially. For

example, the Crab pulsar is known to emit very energetic radio pulses, called ”Giant Radio

Pulse” (GRP) about once in thousands (e.g. Lundgren et al. 1995). This suggests that there

may be large density fluctuations in the magnetosphere. Furthermore, from the observations

of these GRPs, it has been argued that the dispersion measure fluctuates largely, and these

fluctuations can not be explained by considering the density fluctuations of the interstellar

medium alone. Therefore, it is suggested that there are large density fluctuations in the Crab

nebula (Kuz’min et al. 2008, 2011). From these observations, it is quite natural to suppose

that there are density fluctuations in the wind region. We advocate the model that plunging

of a high density blob into the termination shock triggers a flare. We note, however, that the

flares are not directly the same events as GRP (Mickaliger et al. 2012).

Next we compare the wavelength of striped wind and the typical scales of plasma in the co-

moving frame, and consider the conditions for survival of small scale magnetic fields. Although

the striped wind itself is a non-propagating entropy mode, existence of high density blobs and

moderate reconnection may generate electrostatic and electromagnetic modes on somewhat

shorter wavelength than λsw. We may consider various modes, for example, electron Bernstein

mode, which is the electrostatic wave in a thermal plasma (Bernstein 1958), but we do not

specify the type of plasma turbulence. When the inertial length is longer than the λsw, the

electromagnetic modes can survive, while the short scale electrostatic mode may decay. To
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estimate the typical scale of the survival of the longitudinal modes, we use the value of inertial

length. First we consider it in the upstream, i.e., wind region. The Debye length is very small

compared to the inertial length, because the plasma is cold when the reconnection is moderate.

The inertial length c/ωpe can be estimated given the comoving number density. The spindown

luminosity is expressed by

Lsd = 4πr2
tsnΓumc3(1 + σ) = 6× 1038ergs−1, (7.4)

where rts = 3× 1017cm, n is the comoving number density, Γ = 106 (Kennel & Coroniti 1984)

or Γ = 7 × 103 (Tanaka & Takahara 2010) is the bulk Lorentz factor of the pulsar wind, u

is the radial four velocity, σ is the ratio of magnetic to kinetic energy flux. In general, σ is

thought to be much smaller than 1 at the shock region ( σ ∼ 0.003 is the best fit value in

Kennel & Coroniti 1984). We adopt this assumption, and neglect σ in (7.4). When we adopt

the value of the bulk Lorentz factor by Tanaka & Takahara 2010, we get the comoving density

n ∼ 4× 10−10cm−3 and the value of inertial length(
c

ωpe

)
u,TT

∼ 3× 1010cm. (7.5)

When we adopt Γ = 106 (Kennel & Coroniti model), the comoving density becomes smaller.

Using the equation (7.4), we get n ∼ 2× 10−14cm−3, and we obtain(
c

ωpe

)
u,KC

∼ 3× 1012cm. (7.6)

On the other hand, the comoving wavelength of striped wind is

(Γλsw)TT ∼ 1× 1012cm, (7.7)

(Γλsw)KC ∼ 2× 1014cm. (7.8)

Therefore, the inertial length is shorter than the wavelength of striped wind. From the esti-

mation described above, we can see that the small scale turbulence can survive in the wind

region.
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Next we consider the parameters for downstream. We do not consider the possibility that

the downstream plasma has a bulk relativistic speed. The inertial length and Debye length

are comparable at relativistic temperatures. We adopt the value of typical Lorentz factor

γ = 7 × 103 (Tanaka & Takahara model), and γ = 106 (Keneel & Coroniti model). Then we

obtain the inertial length (
c

ωpe

)
d,TT

∼ 3× 1010cm, (7.9)

(
c

ωpe

)
d,KC

∼ 3× 1012cm. (7.10)

The wavelength of striped wind is compressed by a factor of a few ×Γ times compared to

comoving wavelength in the upstream. Therefore, the typical scale of magnetic field is

(λsw)d ∼ 3× 108cm. (7.11)

From the estimation above, we see that the small scale turbulence decays far downstream. We

note that near the shock front or in the shock transition region, the plasma is not completely

thermalized. Therefore, the small scale turbulence can survive in some measure there.

Generally, when the Debye length is much larger than λsw, the longitudinal mode would

disappear rapidly. However, when the dense blob enters the shock front, the inertial length

becomes shorter and small scale turbulence tends to survive in longer time. The density

required for the survival far downstream is 105 times larger than the mean density n, but even

when the density contrast is less extreme, short wavelength turbulence required for the flares

can exist in the shock transition region.

Summarizing this subsection, jitter radiation can produce the flare when the small scale

turbulence survives in the shocked dense blob, and the typical scale of turbulence is consistent

with the typical frequency of the flares. We propose the flare model that the high density blob

plunge into the termination shock, an entropy mode is compressed or transformed to some

other waveform in the shock transition region, the accelerated electrons move in this kind of

turbulent field and radiate the highest energy photons by jitter mechanism.
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7.2.2 Energetics

Now that we have shown that the peak energy higher than Ec can be explained by jitter

radiation, we next examine the energetics of flares. Firstly we note that the energetics problem

is very difficult to solve and has not been much addressed in previous models. The scale of

the emission region is constrained by the observed fluctuation time scale as ctfluc ∼ 1015cm or

by the duration timescale as ctdur ∼ 3 × 1016cm. It is very difficult to concentrate 1% of the

spin down luminosity on this small region, compared to the circumference of the termination

shock ∼ 2 × 1018cm, in either case. We discuss the energetics by considering the size of the

emission region and the density of radiating particles in it. The Crab nebula is not spherically

symmetric as is seen in the X-ray image by Chandra X-ray observatory (Figure 2.6). It is

possible that the emission regions of 100MeV gamma-rays are patchy, but we do not resolve the

Crab nebula at 100MeV gamma-rays, then we assume that the shape of the emission region is

a ring as drawn in Figure 7.1, for simplicity. When the nebula is quiescent, the radial thickness

is determined by synchrotron cooling. To estimate the radial thickness, we suppose that the

acceleration site is located only near the shock front, and the electrons return to the shock front

on gyro time. If we assume the standard value of the strength of magnetic field B = 300µG

(Kennel & Coroniti 1984), and considering the fact that cooling limits the attainable energy

as γ ∼ 6× 109( B
3×10−4G

), we get the radial thickness of the ring as rL ∼ 3× 1016cm. When we

assume B = 85µG (Tanaka & Takahara 2010), the thickness is three times larger. We assume

that the injection site of highest energy electrons is on the equatorial plane, so the ring height

is also constrained by gyro radius of highest energy electrons. The radius of the termination

shock is 3 × 1017cm, so the radial thickness and height of the 100MeV ring is a few ×10% of

the radius.

Next we estimate the parameters in the emission region in the flare state. Firstly we

examine the case when the scale of the blob is ctfluc ∼ 1015cm, and the single blob becomes the

emission region for the flare. We assume that the blob moves on the equatorial plane, so a part

of the ring becomes the emission region of flare. If we assume that the strength of magnetic
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Figure 7.1: Cartoon of the ”100MeV ring”. The length a is the radius of termination shock rts =

3 × 1017cm, b is radial thickness and c is the height of 100MeV ring. They are restricted by the

Larmor radius of 3× 1016cm.

field in the blob is the same as in the other region, the radial thickness of jitter emission region

cannot be determined by synchrotron cooling, because the Larmor radius of the highest energy

electrons 3× 1016cm
(

B
3×10−4G

)−3/2
is larger than the blob size ctfluc. The acceleration region is

larger than the jitter emission region and the size of emission region is determined by blob size

in this picture. However, this picture does not work for flare models. The reason is as follows.

The energy distribution of electrons at flare states is very hard and different from the one of

the quiescent state. Then the acceleration process in the acceleration region of the highest

energy electrons which emit flare photons is different from other region. We assume that a
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dense blob enters in the termination shock region, and implicitly assume that the other region

is undisturbed. Then the acceleration process outside the blob should be the same as in the

quiescent state. Therefore, it is more natural that the magnetic field in the blob is stronger

than the mean magnetic field strength and that the acceleration process is also different in the

flare states to produce highest energy electrons with a very hard spectrum. Thus, the cutoff

energy of accelerated electrons should be smaller because of the strong magnetic field. Since

the size of acceleration region is limited by the blob size, the required strength of magnetic

field is 3× 10−3G to make rL = ctfluc, and the maximum Lorentz factor is limited by radiation

loss and becomes smaller to ∼ 2 × 109. Therefore, the required wavelength of turbulent field

becomes 106cm to emit 400MeV photons. This constraint may seem to be very tight, but it is

not improbable. From this consideration, the volume of the blob is 1045cm3 and the emission

region of the flare is about 2× 106 times smaller than in quiescent state, because the volume

of 100MeV ring is (circumference) × (radial thickness) × (height) = 2× 1051cm3.

The constraint for the volume of emission region can be alleviated when we assume the blob

size is ctdur = 3× 1016cm, and flux fluctuation comes from the internal structure of the blob of

which scale is ctfluc = 1015cm. We assume that the acceleration scale is the same as the blob

scale, and small denser regions of which scale is ∼ ctfluc distribute in it as depicted in Figure

7.2. The mean magnetic field strength is 3 × 10−4G, by equating Larmor radius of highest

energy electrons and ctdur. The Lorentz factor of the highest energy electrons is determined

by the magnetic field strength as γ ∼ 6× 109, and the required wavelength of turbulent field

to emit 400MeV photon is estimated as 107cm. The size of the blob is 3 × 1016cm, which is

the same as the thickness of the 100MeV ring in the quiescent state for the standard magnetic

field strength. Therefore the blob volume is only about 102 times smaller than the 100MeV

ring.

Next we consider the required number density of highest energy electrons in the blob to

reproduce the flare luminosity. We are considering the high density blob, so the number density

of accelerated electrons can be much larger than the one of the quiescent state. The luminosity
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Figure 7.2: A schematic picture for comparison of relevant scales. The red box is the emission

region of the homogeneous blob model, and the blue box is that of the inhomogeneous blob model.

is proportional to γ2B2N , where N is the number of electrons at maximum energy in the blob.

First, for homogeneous blob of a size ctfluc, we assumed that the magnetic field strength is

about 10 times larger than the mean magnetic field strength. Therefore the maximum Lorentz

factor is limited as 2× 109, which is a few times smaller than the Lorentz factor of the highest

energy electrons in other regions in the 100MeV ring. The volume of the emission region is

2 × 106 times smaller than that in a quiescent state. Therefore, the required number density

of the highest energy electrons in the blob is about 106 times larger than in the quiescent state

to reproduce the flare luminosity. In section 7.2.1, we considered the required density for the

survival of the small scale fluctuations in shock transition region. It is about 105 times the
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mean density. If the acceleration is the same as in the quiescent state, the number density

of the highest energy electrons may not be as large as 106 times the number density of the

highest energy electrons in the quiescent state. However, the energy distribution of accelerated

electrons is very hard, so the number of the highest energy electrons can be 106 times larger

than in the quiescent state. Therefore, the flare luminosity can be explained by this model

if the mean density in blob fulfills the condition of the survival of the small scale turbulence.

Here, we have to note that the flare luminosity is 1% of the spindown luminosity, so the

asymmetry of the pulsar wind must be very high in this model.

Next, we examine the constraint on the scenario of inhomogeneous blob of a size ctdur.

The blob volume is only 102 times smaller than the 100MeV ring, and we assumed that the

magnetic field strength is the same order as the one of quiescent state (3 × 10−4G), so the

maximum Lorentz factor of the electrons is the same as in other region. The required number

density of highest energy electrons in the blob is about 102 − 103 times larger than the mean

density of highest energy electrons. The flare luminosity can be obtained by considering the

hardness of electron energy distribution which is calculated from the observed flux alone, and

the high number density of electrons would help to accomplish the large luminosity of flare.

In short, while the small homogeneous blob scenario is not impossible, large inhomogeneous

blob scenario is more plausible.

7.2.3 Spectrum

The observed spectra of flares indicate that the energy distribution of electrons is very hard.

As is discussed in the previous subsection, the hard energy distribution of electrons is also

required to solve the energetics. If the electrons take a power law energy distribution, the

power law index p of electrons (dN
dE
∝ E−p) can be estimated from the photon index. However,

when the strength parameter a < 1 and when either p < 1 or p < 2µ + 1, the photon index

around 100MeV can be determined by jitter mechanism, where µ is the power law index of

isotropic turbulent magnetic field (B2(k) ∝ k−µ). The spectrum of flare component is fitted by
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a power law plus cutoff, and the time integrated power law index is γF = 1.27± 0.12 (Buehler

et al. 2011). Clausen-Brown & Lyutikov reexamined the time resolved spectrum in Buheler

et al. 2012, and obtained the photon index in the most luminous period as γF = 1.08± 0.16.

If the index is supposed to reflect the energy distribution of electrons, the time integrated

power law index is p = 1.54 ± 0.24 and time resolved one (in the most luminous state) is

p = 1.16± 0.32, because γF = (p + 1)/2. It is very hard and inconsistent with the power law

index p = 2.5 at injection in the quiescent state (Tanaka & Takahara 2010). Additionally, the

hard energy distribution is consistent with the observation that no counterpart of the flares has

been detected in other wavelengths. From these facts, the particle acceleration in the blob is

expected to be different from the other region. For example, a stochastic acceleration process

may play a crucial role to make the hard electron energy distribution in a short time (see e.g.

Hoshino 2012).

The hard photon index can be interpreted as the reflection of hard power law index of

electron energy distribution, but getting the value p ∼ 1 is somewhat difficult (Clausen-Brown

& Lyutikov 2012). We show another interpretation of these spectral indices by using the

theory of jitter radiation on the assumption that the accelerated electrons follow a very hard,

almost monoenergetic distribution. For a < 1, the theoretical spectrum of jitter radiation

from monoenergetic particles moving in an isotropic turbulent magnetic field is expressed as

a broken power law and cutoff as is seen in Figure 7.3 (e.g. Fleishman 2006). The photon

index of the low energy side is γF = 1, and that of the high energy side is γF = µ + 1. The

cutoff energy is determined by the smallest scale (in other words, dissipation scale λdis) of the

turbulent field. The inertial length, which corresponds to the typical scale of magnetic field

fluctuations, is proportional to n1/2, and the luminosity is proportional to n when the emission

region volume is fixed. Therefore, the typical photon energy of flares is the highest in the most

luminous state. Additionally, the typical energy and flux should have the positive correlation

in this model, and it is consistent with the observation (Buehler et al. 2011). We regard the

photon index of γF = 1.08 ± 0.16 as the intrinsic photon index of jitter radiation. At this
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Figure 7.3: Radiation spectrum of jitter radiation by monoenergetic electrons for a < 1.

time, the dissipation scale λdis and injection scale λtyp of turbulent field are very close, so it

is difficult to resolve cutoff frequency γ2c/λdis and break frequency γ2c/λtyp. When the flux

is smaller, the injection scale would be larger because the number density would be smaller.

Therefore, γ2c/λtyp becomes smaller, so the photon index around 100MeV can be interpreted

as a reflection of the power law index of magnetic field fluctuations. It should be noted that

it is usual µ > 1 in the ordinary turbulent field, which causes some problem that µ < 1 is

required to explain the observed spectral index.
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7.3 Discussion

7.3.1 Difference from other models and predictions

We have considered inhomogeneities of the emission region. Bykov et al. also considered

inhomogeneous emission regions. At first, we discuss the difference from their model. They

assumed that the size of the acceleration site is much larger than the emission region, and

the acceleration mechanism in the quiescent state and flare state is identical. If the energy

distribution of electrons stays unchanged in the flare state, the spectra in 100MeV range cannot

become harder than the spectrum in MeV range in the quiescent state. This does not seem to

match observations. In contrast, we consider that the acceleration site should have a similar

size to the blob size, and the acceleration mechanism is different in the flares, because the

observed spectrum is very hard. When the electron energy distribution is very hard (p ≤ 1),

the photon index γF = 1 can be naturally explained by jitter mechanism. They deal with the

problem assuming that the emission region is 1D for radial direction, and they do not consider

the energetics explicitly in their paper. They consider the radial length of the emission region

is the same as the quiescent state (2× 1016cm), and there are the blobs randomly distributed

with the 1% scale (∼ 1014cm) having stronger magnetic field. The length is consistent with

the observed timescale of the flares.

The scale corresponding to the single pulse of flare has to be smaller than 1015cm. The

solid angle of the emission region can be constrained by duration time of flare. Therefore,

the predicted luminosity is a few dozen times smaller than the observed one. While they

predicted that the polarization degree would enhance during the flare, our model predicts the

converse prediction. The polarization degree would be very low during the flare, because the

gamma-rays are emitted in the turbulent field by jitter mechanism.

The most popular interpretations of the Crab flares are Doppler boost models. While

Doppler boost model predicts that the TeV-PeV flare would accompany the 100MeV flare,

our model does not predict such a correspondence between GeV and TeV-PeV. In our model,
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the increase of the highest energy electrons and frequency shift collaborate to create the flare.

Therefore, the required total number of the highest energy electrons is only a few times larger

than the quiescent state. In TeV-PeV range, since there are no frequency shift, and inverse

Compton scattering by the highest energy electrons are in Klein-Nishina regime so that only

a very weak bump will appear in PeV range.

The hard spectrum of flares is one of the difficult features to interpret. Clausen-Brown

& Lyutikov explained this hard spectrum by very hard electron energy distribution near the

radiation reaction limit. They assumed acceleration time much shorter than escaping time, and

considered radiation loss. The electrons pile up near the maximum energy. They commented

that the pile-up scenario could explain the observed SED by tuning the acceleration timescale.

If acceleration time is much shorter than the fluctuation time of flare, the distribution becomes

monoenergetic, and spectrum becomes intrinsic one γF = 2/3 for synchrotron radiation or

γF = 1 for jitter radiation. Our model does not require the tuning of acceleration time, and

predict that the flare spectrum will not be harder than νFν ∝ ν1.

7.3.2 Acceleration and scatterers

Kirk and Reville argued that jitter radiation cannot emit photons with energy higher than the

critical synchrotron energy in the DSA scenario in their paper (Kirk & Reville 2010). In their

analysis, they assumed that the scatterer (magnetic field fluctuation) is a single population.

For a < 1, particles experience ballistic transport and take a longer time to come back to the

shock than the gyrotime. Therefore, the acceleration time becomes longer, so the maximum

energy of electrons becomes smaller, and radiation frequency is smaller than the one for a > 1

in spite of taking into account jitter mechanism. Conversely we argue that the jitter mechanism

can emit higher energy radiation than synchrotron one. The reason for apparently inconsistent

conclusions lies in the difference of situations. We assumed implicitly the existence of multi

populations of scatterers. Although we do not specify the acceleration mechanism, we suppose

that the large scale scatterers exist, too. The acceleration time depends on the large scale (as
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large as Larmor radius) scatterers, so the acceleration time is not so long. Therefore, our model

does not contradict their conclusion. In fact, the situation with two populations of scatterers

are considered by Reville & Kirk 2010, and jitter component emerges over the synchrotron cut

off. Stated another way, the photon energy of jitter component can be higher than that of

synchrotron component when there are multi population of scatterers.

7.4 Summary & Conclusion

We propose a model which explains the flares of the Crab nebula over the 100MeV by jitter

radiation. The wavelength of striped wind of the Crab pulsar is about two order of magnitude

longer than the required scale of turbulent field to emit photons with energy E > Ec by jitter

mechanism. A high density region is required for existence of the small scale turbulence. It

is suggested that there are large density fluctuations in the Crab pulsar magnetosphere and

nebula. Therefore, we consider that there are high density blobs in the pulsar wind region.

The blobs plunge into the termination shock, generate the short wavelength turbulence of elec-

tromagnetic field, and accelerated electrons radiate gamma-ray emission by jitter mechanism

in the blob. The required strength of mean magnetic field in blob is 10 times larger, and the

number density of highest energy electrons in blob is 106 times larger than in quiescent state

to reproduce the April 2011 flare by homogeneous blob model for which the size of the blob is

ctfluc ∼ 1015cm. When we adopt the inhomogeneous blob model, for which the size of the blob

is ctdur ∼ 3× 1016cm, the required magnetic field strength is as large as that of the quiescent

one, and number density of highest energy electrons is about 102−103 times larger than in the

quiescent state. The required high density of highest energy electrons in the blob is consistent

with our assumption that high density blobs trigger flares and hard energy distribution of

electrons which is implied by observed spectra. The very hard photon index γF = 1.08± 0.16

of April 2011 flare in the brightest state is consistent with the intrinsic photon index of jitter

radiation for a < 1. We make following three predictions for the future Crab flares: firstly, the
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polarization degree will become lower in flare state, secondly, no counterpart will be seen in

TeV-PeV range, and thirdly, the flare spectrum will not be harder than νFν ∝ ν1.





Chapter 8

Overall Conclusions

In this thesis, we have studied the radiation spectra from relativistic electrons moving in

the turbulent electromagnetic fields. We should consider the radiation signatures taking into

account the turbulence, since the electromagnetic turbulence would be generated in the shock

region of high energy astrophysical objects. They often show the radiation spectra which

are hard to explain with the conventional synchrotron and inverse Compton processes. We

have performed first principle numerical calculations to investigate the radiation signatures

for various turbulences. We have obtained a general reference chart of the spectral shapes

as well as several new features previous unknown or only ambiguously understood for the

3D isotropic electromagnetic turbulence. In addition, to obtain better understanding of the

radiation mechanisms which determine the spectral signature, we have performed analytical

calculation of the electron motion for a single mode plasma oscillation and numerically calculate

the radiation spectra which are compared with those for turbulent fields. We also consider

applications of these radiation mechanisms to specific astrophysical objects, especially for the

peculiar gamma ray flares from Crab nebula, for which we construct a detailed model. We

summarize our important results.

81
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8.1 Spectral features for isotropic electromagnetic tur-

bulence

In chapters 5 and 6, we have investigated the radiation spectra for various turbulent fields.

A turbulent field is characterized by the spatial scale λtyp, field strength σ, and oscillation

timescale Tw, and in term of the frequency by ω0 = 2πc/λmax, ωst = eσ/mc, and ωw = 2π/Tw.

We normalize ωst and ωw by ω0 as

a ≡ ωst

ω0

=
2πeσ

mc2λtyp

b ≡ ωw

ω0

.

We have studied two cases of the turbulences. The first one is the magnetic (transverse)

turbulence supposed to be generated by Weibel instability. We assume that this magnetic field

is static, because the Photon Formation Time (PFT) would be shorter than the variation time

scale of the field. The parameter characterizing these fields is only a, since b = 0 for a static

field.

• For a ∼ 1, the break frequency in the low frequency region ωbl ∼ aγ2ωst and the break

frequency in high frequency region ωbh ∼ a−1γ2ωst = γ2kminc become nearly equal and a

peak of the spectrum is formed. The lower side of the peak shows Fω ∝ ω1/2, while the

higher side of the peak shows Fω ∝ ω−µ, where µ is the power law index of the turbulence

B2(k) ∝ k−µ. This result should be compared to that for a� 1, i.e., previously obtained

by Medvedev (2006) and Fleishman (2006).

• For 1 < a < γ, the spectrum shows mixed signatures of synchrotron and jitter radiation.

Around the peak frequency, the spectral shape is identical to the synchrotron radiation,

i.e., the peak frequency is γ2ωst, and lower side of the peak shows Fω ∝ ω1/3 , and higher

side shows an exponential cutoff. However, in the highest frequency region beyond the
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cutoff, the power low component Fω ∝ ω−µ emerges, and in the lowest frequencies a

deviation from Fω ∝ ω1/3 is seen around a−3γ2ωst.

• These spectral features are clearly interpreted by the concepts of PFL and electron

trajectory.

The second one is the electrostatic (longitudinal) turbulence supposed to be generated

by two stream instability. This turbulence consists of Langmuir waves, so that we take into

account the time variability of the field. The parameters characterizing these fields are a and

b, where the frequency of the field ωw is assumed to be identical to the plasma frequency ωp.

We assume 3D isotropic turbulence, and the energy change of electron is directly taken into

account. The main results are the followings.

• We organize the radiation signatures noted by previous researchers in various parameter

range, and the calculate the spectra in intermediate regimes for which any approximations

hard to apply.

• For the most interesting parameter regime of a > b > 1, for which some confusion has

been seen in previous works, we clarify the spectral signature. The peak frequency is

γ2ωst and other spectral signatures are almost identical to the Wiggler radiation.

• We confirm the above by analytical calculation of electron motion in a pure plasma

oscillation.

• The effects of energy change of the radiating electron plays minor role for the radiation

spectra for a ∼ b ∼ 1, which is expected in relativistic shocks.

8.2 Jitter radiation model of the Crab gamma ray flares

The Crab gamma ray flares discovered recently show a few peculiar signatures. In particular,

the maximum energy of gamma rays exceeds the critical energy Ec determined by synchrotron
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radiation loss. We propose a model where the flare emission is due to jitter radiation mech-

anisms. This model satisfies the constraints of short variable time and very large luminosity,

which have been ignored in a large part of previous researches.

• To reproduce the flares, we require that a high density blob with number density higher

than 102 − 103× mean number density in quiescent state plunges into the termination

shock, and the entropy mode (striped wind) is converted to the magnetic turbulence,

and jitter radiation makes a gamma ray flare.

• We make three observational predictions for the future Crab flares: first, the polarization

degree will become lower in flare state; second, no counter part will be seen in TeV-PeV

range; and third, the flare spectrum will not be harder than ωFω ∝ ω1. The predictions

will be evidences for our model because these features would contradict the predictions

by other models.

The radiation spectra from relativistic electrons interacting with turbulence have various

different signatures from those of other existing radiation mechanisms. Notwithstanding, only

a few applications to high energy astrophysical objects have been done. In this thesis, we have

shown a clear reference chart of radiation signatures, so that we hope that this thesis will play

a role in understanding the physical mechanisms of the high energy astrophysical objects by

applying to the observed spectra.



Appendix A

Basic Concepts of Radiation from a

Single Particle

In this appendix A, we briefly review the radiation mechanisms from an electron moving in

electromagnetic fields. First, we introduce the basic picture of the synchrotron radiation. This

is one of the most popular radiation mechanisms from a relativistic electron interacting with

external magnetic field. Next, we introduce two convenient concepts for understanding the

radiation spectrum. The one is photon formation length (PFL) or Photon Formation Time

(PFT), and the other is the virtual quanta. The picture of the synchrotron radiation and

these concepts are very useful to understand the radiation signatures in this thesis. Lastly we

briefly show the synchrotron insertion devices of Wiggler and Undulator. The concepts which

are developed for these devices are also useful for interpretation of radiation spectra.

A.1 Synchrotron radiation

The synchrotron radiation is the radiation from a relativistic charged particle moving in uni-

form magnetic field. It is firstly calculated by Schott (1912), and sophisticated by many

researchers, for example, Schwinger (1949) and Ginzburg & Syrovatskii (1965). The basic pic-
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ture of the synchrotron radiation is as follows. A charged particle with Lorentz factor γ � 1

is moving in a uniform magnetic field. The energy of this particle is constant, since there is

no electric field. The equation of motion is written as

mγ
d

dt
v =

q

c
v ×B, (A.1)

where m is mass and q is charge for this particle. Separating the velocity components along

the field and in a plane normal to the field, it is separated into

dv‖

dt
= 0, (A.2)

dv⊥

dt
=

q

γmc
v⊥ ×B. (A.3)

Because of |v| = constant, |v⊥| = 0. The frequency of the gyration is

ωg =
qB

γmc
. (A.4)

Thus, the particle traces helical orbit with rotation frequency ωg.

The major part of radiation power from relativistic particle is emitted toward velocity

direction, concentrated into small cone within the angle ∼ 1/γ. It can be understood easily

by using Lorentz transformation as follows. We assume the magnetic field is along the z-axis

and pitch angle α = π/2 and the instantaneous velocity direction is along x-axis. In the

electron rest frame, there is electric field E ′
y = −γvBz/c. The electron accelerates toward by

the electric field toward y′ direction, so that the radiation intensity resembles that of dipole

radiation, anisotropic intensity of which is depicted in the upper in Figure A.1. The emitted

photon direction is written as

cos θ′ =
cos θ − β

1− β cos θ
, (A.5)

where θ is the angle between the x-axis and radiation direction. From this equation, the

emitted photon into θ′ ≤ π/2 region is concentrated into small angle θ = 1/γ, i.e., cos θ > β.

The radiation in the observer frame is strongly anisotropic, which is called relativistic beaming.

The beamed emission in observer frame is depicted lower in Figure A.1.
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Figure A.1: Relativistic beaming. Upper image represents the geometry and emission pattern in

electron rest frame. Lower image represents these in observer frame.

For arbitrary pitch angle α = tan v‖/v⊥, the major part of radiation is confined into a

small solid angle as is depicted in Figure A.2. This picture is important as the basis of the

interpretation of the radiation spectra.

Before we show the radiation spectra of the synchrotron radiation, we briefly review the

method of the calculation of the radiation spectra from a relativistic charged particle. It starts

from the equation of radiated energy emitted to unit solid angle:

dW

dΩ
=

∫ ∞

−∞
| ~A(t)|2dt, (A.6)

where A(t) is written by the radiation part of the retarded electric field:

~A(t) =
( c

4π

)1/2

[R~E]ret, (A.7)

where R is the distance from the radiating particle to the observer. We approximate the size

of emission region is much smaller than the distance. Performing Fourier transformation of
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Figure A.2: Synchrotron radiation from a particle located at point O with pitch angle α.

~A(t), we get

~A(ω) =

(
e2

8π2c

)1/2 ∫ ∞

−∞
eiωt

[
~n× {~n− ~β} × ~̇β

(1− ~β · ~n)3

]
ret

dt, (A.8)

where ~β = ~v/c, and ~n is the unit vector to the observer. On the other hand, the radiated

energy per unit solid angle per unit frequency is written as

d2I(ω,~n)

dωdΩ
= 2|A(ω)|2 (A.9)

with

dW

dΩ
=

∫ ∞

0

d2I(ω,~n)

dωdΩ
dω. (A.10)

Using the approximation that the distance from the observer to the radiating particle is very

far, and changing the variable from the observer time to the retarded time, the radiated energy
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per unit solid angle per unit frequency is rewritten as

d2I(ω,~n)

dωdΩ
=

e2

4πc

∣∣∣∣∣
∫ ∞

−∞

~n× [{~n− ~β} × ~̇β]

(1− ~β · ~n)2
eiω(t′−~n·~r(t′)/c)dt′

∣∣∣∣∣
2

, (A.11)

where t′ is the retarded time, and ~r(t′) is the position of the electron. The distance to observer

R(t′) is approximated to |~x| − ~n · ~r(t′), where ~x is the vector from the center of the emission

region to observer, since x � r. This equation (A.11) is the basic formula for the radiation

spectrum from a charged particle. We use this formula in numerical calculation. One can

calculate the radiation spectra by using the information of motion, i.e., the position, the

velocity, the acceleration of the particle, and the direction from the observer to the particle.

We use the assumption that particle motion is a gyro motion with constant velocity as we

show above, and we get the radiation spectra of synchrotron radiation. Finally, the commonly

used synchrotron radiation spectrum is calculated by integrating it over solid angle as

dI

dω
=
√

3
e2

c
γf(x), (A.12)

where f(x) is a function of

x ≡ 2ω/3γ3ωB sinα, (A.13)

and written by modified Bessel function as

f(x) ≡ x

∫ ∞

x

K5/3(ξ)dξ. (A.14)

The radiation spectrum is depicted in Figure A.3. It is characterized by the peak frequency

of γ3ωg sinα, the spectral index in low frequency region of 1/3 and exponential cutoff above

the peak frequency.

A.2 Useful concepts

Here we introduce useful concepts for a clear interpretation of the radiation spectra.
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Figure A.3: Synchrotron radiation spectrum from a charged particle with pitch angle α

A.2.1 Photon Formation Time and Photon Formation Length

First, we review a concept of Photon Formation Time (PFT) or Photon Formation Length

(PFL). This concept is introduced by Akhiezer & Shul’ga (1987), to investigate the effect of

the scattering on the radiation in amorphous and crystal media. PFT or PFL is the coherent

time or length of the photon formation. In general, PFT τ is determined implicitly by using

corresponding frequency ω as

ω × (τ − |~x(t+ τ)− ~x(t)|/c) = 2π. (A.15)

It can be understood as follows. We consider the radiation from a non-relativistic particle, the

timescale T of motion and the frequency of the radiation are related as

ω =
2π

T
. (A.16)
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Figure A.4: A relativistic electron chases photon. A yellow filled circle is a photon, and blue filled

circle is a electron which emit the photon. Observer sees Doppler-boosted photon.

For example, the correlation of the timescale of the simple oscillation of charged particle

and the frequency of the dipole radiation from this particle is written as equation (A.16).

However, this relation is not valid for the radiation from a relativistic particle, because the

retarded effect is not negligible. When the particle velocity is not negligible compared to the

light speed, the radiation frequency ω is affected by the photon chasing effect (Doppler effect).

Next we estimate the difference of 1/ω and τ . For simplicity, we consider simple situation

when the relativistic charged particle moving along the x-direction with the Lorentz factor γ

is perturbed to z-direction with frequency ωs,1. The observer is on the x-direction.

Because of β = v/c ∼ 1, the effect of particle chasing the photon as in Figure A.4 is not

negligible. The emitted radiation in the time scale of Ts,1 = 2π/ωs,1 is observed in the timescale

To,1 = Ts,1(1 − v/c), so that the observed frequency is ωo,1 = 2π/To,1 ' 2γ2ωs,1. Conversely,

the corresponding time of the observed frequency ωo,2 is Ts,2 = τ = 4πγ2/ωo,2. This is called
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Photon Formation Time, and the passing length in PFT is PFL, which is approximated as c×

PFT in many cases for the typical frequency of some radiation mechanisms. However, we note

that the PFT is not always 4πγ2/ωo and PFL is not always v× PFT for the low frequency

photon in general complicated trajectory.

We can estimate the observed frequency using the PFT and orbit. For example, the typical

(peak) frequency of the synchrotron radiation can be understood as follows. The majority

of the radiation energy is concentrated in small beaming cone with angle ∼ 1/γ, and the

radiating particle traces gyro orbit. Therefore, the observer sees strong emission in the time

scale ∼ 1/ωgγ = mc/eB. This is the PFT of the synchrotron radiation. The velocity direction

is almost toward the observer in this time span, therefore the observed frequency is∼ γ2eB/mc.

Moreover, the correlation between the beaming cone angle and observed frequency is qual-

itatively understood by PFT and PFL. The lower frequency corresponds to the larger cone

angle. Therefore, PFT of the lower frequency photon is larger than the higher frequency pho-

ton. The fact that the correspondence between the frequency and PFT is not linear, which is

from the fact that the trajectory is not a straight orbit.

A.2.2 Method of virtual quanta

Here we introduce another useful concept of virtual quanta. It is an approximation of regarding

a wave (which is a component of a turbulence) as a photon in the electron rest frame, which

is proposed by Weizsacker 1934 and Williams 1934 independently (cf. Jackson 1999). To

introduce this concept, we use very simple assumption. A highly relativistic particle with

Lorentz factor γ moves along x-axis interacting with a sinusoidal wave ~B(~k), i.e., frequency

ω = 0. As an example, we assume

Bz(x) = Bz0 sin kxx.

Performing the Lorentz transform to the electron rest frame, this wave has not only B′
z = γBz,

but also E ′
y = −v

c
Bz, with wavenumber k′x = γkx. This mode moves to x-direction with
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velocity −v ∼ −c. Thus, the wave in the electron rest frame is almost photon with frequency

ω′ = ck′x. Here, we make one more assumption that this wave is ”not strong”, i.e., satisfies

qE ′
y0

mcω′ � 1, (A.17)

where E ′
y0 is the largest value of the electric field, which is from Bz0. When this condition is

achieved, the electron in this frame is always non-relativistic while interacting with this wave.

Therefore, the electron scatters the ”photon” in Thomson regime, so that the frequency of the

radiation is not changed from ω′. We perform the Lorentz transformation back to the observer

frame, and get the radiation with frequency ∼ γω′ ∼ γ2kxc. We note that the majority of

the radiation energy is concentrated into the small cone centered along the velocity direction

with solid angle ∼ 1/γ2, from the relativistic effect (relativistic beaming). This picture is

quite similar to the inverse Compton scattering, therefore this mechanism is called ”Inverse

Compton scattering of the plasmon”, and this method is called ”The method of the virtual

quanta (photon)”.

A.2.3 Wiggler and Undulator

In the field of laboratory experiments, the radiation from an electron which moves in non-

uniform magnetic field is well studied using the insertion device of synchrotron orbital radiation

factory, where a series of magnets are line-upped to make the particle deflect periodically. It

is called ”Wiggler” or ”Undulator” (see e.g. Jackson 1999). For Undulator, the strength of

magnets B and gaps between them λ are chosen to satisfy the condition that the observer

is always in the beaming cone. On the other hand, for Wiggler, the observer is periodically

in and off the beaming cone. We estimate the critical distance λc which divides Wiggler and

Undulator. The deflection angle in one deflection is θdef = λ/r, where r ' γmc2/eB is the

typical curvature radius of the orbit. The radiation from a relativistic particle is concentrated

into small cone with opening angle ∼ 1/γ. Therefore, the critical condition dividing the

Wiggler and Undulator is θdef = 1/γ, which is rewritten as λc = r/γ. Thus, the device is
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called Undulator when λ < λc, while it is called Wiggler when λ > λc. The radiation spectrum

of Undulator shows a sharp peak at γ22πc/λ, while Wiggler shows a broad spectrum with peak

frequency ∼ γ2eB/mc. The relation between typical frequencies and deflection angle is a key

point for understanding of the radiation spectra. Perturbative jitter radiation or perturbative

DSR is recognized as extensions of the Undulator radiation, since the spatial scale of turbulence

λ is assumed to be much smaller than mc2/eB. The original jitter radiation (Medvedev 2000)

is almost identical to the Undulator radiation, because a single mode dominates the turbulent

magnetic field in his treatment. We note that some review of the radiation spectra of Wiggler

and Undulator are shown in Appendix C



Appendix B

Details of Past Studies

In this appendix B, we describe the theoretical studies for the radiation from a relativistic

charged particle moving in turbulent electromagnetic field related to our study in this thesis.

We have reviewed the synchrotron radiation in Appendix A, which is the radiation mecha-

nism from a relativistic particle moving in a uniform magnetic field. We first review the case

when magnetic field is non-uniform. Next we review the applications of the theories to the

high energy astrophysical objects. Although many researchers (especially in Russia) have ex-

amined the radiation signatures (e.g. Tsytovich & Chikhachev 1969, Melrose 1971, Ginzburg

& Tsytovich 1980, Toptygin & Fleishman 1987, and references therein), the application has

not been discussed actively.

Medvedev rediscovered the radiation signatures from a relativistic electron in small scale

magnetic turbulence, and applied to GRBs, by naming it ”jitter radiation” (Medvedev 2000).

This study is important, because it has attracted the attentions of researchers to the radiation

processes. Moreover, this process is on the very simple configurations, so that we start from

the review of the jitter radiation.

95
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B.1 Jitter radiation

Medvedev and Loeb (1999) examined Weibel (or filamentation) instability at the relativistic

ion-electron shock in the context of Gamma ray bursts (GRB). Medvedev (2000) claimed that

the radiation from an accelerated electron at this shock is different from the synchrotron radia-

tion because the spatial scale of the generated magnetic field is very small and electrons would

not trace a helical orbit. The strength parameter a is estimated to O(10−1) by Medevedev, so

that he approximated a� 1 for calculation of the radiation spectra.

Medvedev derived a radiation formula for a � 1, which is same expression as Landau &

Lifshitz 1980. Physical picture is as follows. The electron moves almost straightly at almost

constant velocity, but it is shaken perpendicularly to the velocity, so called ”jittering”. The

perpendicular component of the velocity is very small, and it is also non-relativistic in the mean

velocity frame. By an analytical treatment of the radiation from this particle, he started from

the formula (A.11) with the approximation of γ � 1 and a� 1. In other words, he assumed

that the electron trajectory is straight and that the observer is always in the beaming cone.

The acceleration is treated as a perturbation, so that the change of the velocity is omitted.

We use the electron rest frame and the mean velocity frame as an identical meaning hereafter,

since there is no difference in Medvedev’s treatment. The angle integrated radiation spectra

is approximated as

dW

dω
=

e2ω

2πc3

∫ ∞

ω/2γ2

| ~wω′|2

ω′2

(
1− ω

ω′γ2
+

ω2

2ω′2γ4

)
dω′, (B.1)

where the ~wω′ is a Fourier component of the acceleration, and ω′ = ω(1−β cos θ) expresses the

photon chasing effect, ans θ is the angle between the observer and photon emission direction in

the observer frame. As you see at the relativistic Doppler boost effect, the observed frequency

is the function of the emission angle. ω′ is approximated as

ω′ = ω(1− β cos θ) ' ω

(
1− β +

θ2

2

)
' ω

2

(
1

γ2
+ θ2

)
, (B.2)

where we used θ � 1, because the emission from the relativistic particle is concentrated into
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the small beaming cone.

He assumed an 1D distribution for the magnetic field as

B(k) =

CBk
−µ for 0 ≤ k ≤ ktyp

0 otherwise

(B.3)

where ktyp is the typical wavenumber of the generated turbulence, CB is a normalization

constant, and µ ≥ 1, so that the mode k ' ktyp is dominant. This is an important difference

with the turbulence which Fleishman used (e.g. Flesihman 2006). He further assumed that

the velocity and the magnetic field are perpendicular. On the above setting, he solved the

equation of motion and performed the Fourier transform of the acceleration. Substituting it

to the equation B.1, he got the radiation spectrum. The peak frequency is about γ2ktypc. The

lower frequency region is written by power law with index 1, and higher frequency region shows

abrupt cutoff.

The typical frequency is understood by using the method of virtual quanta. The mode

with wavenumber ktyp is a quasi photon with frequency ∼ γktypc in the electron rest frame.

Therefore, the frequency of the scattered photon in the observer frame is ∼ γ2ktypc. The

abrupt cutoff in the higher frequency region is understood, because the higher wave number

than ktyp does not exist. As for the low frequency spectrum, we show only the physical picture

and omit the detail explanation of the index of 1, since it is rather redundant. As is shown

in the appendix C, the low frequency region than γ2ktypc with a power law index of 1 is the

weakly beamed emission (Figure B.1). In other words, this low frequency photons are emitted

larger angle than 1/γ. The radiation frequency in the electron rest frame is γktypc, therefore,

the spectrum in the observer frame comes from the beaming effect. The observer in a specific

direction to the velocity observes the monochromatic emission. Their frequency corresponds to

the angle between the velocity and the line of sight. This picture is same as inverse Compton

scattering of the monochromatic emission by a single particle. The angle integrated radiation

spectrum is same as this jitter radiation.
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Fω

ω

ω
1

γ2ktypc

Figure B.1: The radiation spectrum of the 1D jitter radiation (Medvedev 2000). The maximum

frequency is γ2ktypc. The frequency region lower than peak shows hard spectrum Fω ∝ ω1, and shows

abrupt cutoff above the peak.

The jitter radiation can produce the very hard spectrum Pω ∝ ω1. Medvedev claimed

that the Gamma ray bursts which have very hard spectra Fω ∝ ω1 may be explained by

jitter radiation mechanism. It was big impact to the society of the high energy astrophysicists.

However, Fleishman (2006) claimed that it is based on too simplified an assumption of artificial

magnetic field configuration (Figure B.2) and the radiation spectrum is rather soft for more

general magnetic field configuration. For preparation of the discussion about the validity of

the configuration of the magnetic field, we firstly clarify the physical picture which Medvedev

assumed. He assumed the emission region is shock surface of x − y plane in the shock front

rest frame. Here, we note that Medvedev omitted downstream bulk velocity in the shock front

rest frame, since he implicitly assumed that the shock is kinetically dominated, so that the

downstream velocity is sub-relativistic. The observer is in the x-direction in this frame. The
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Figure B.2: A cartoon of the configuration of electron and magnetic field which Medvedev (2000)

used.

magnetic field is By with the wavenumber kx. The velocity is vx, so that acceleration is az.

The electron interacting with By(kx) and radiate the emission to the x-direction. For this

situation, the observer observes the hard spectrum Fω ∝ ω1 of the jitter radiation.

Next, we discuss the validity of his assumptions. He claimed that one dimensional jitter

radiation dominated the GRB emission on the basis of the limb brightening effect (Panaitescu &

Meszaros 1998). However, it is rather misleading, because the velocity distribution of radiating

electron would be nearly isotoropic in the downstream rest frame, so that large part of the

emission is from the electrons having vz components (Figure B.3). Moreover, the filamentation

instability restricted the direction of wavenumber to the perpendicular direction to the beam,

therefore, ky should also exist. From the general treatment of the instability of the relativistic

two-stream plasma by Bret et al. (2004, 2005), the wavenumber generally has all component

of ~k. Thus, the Medvedev’s treatment must be over simplified one. Although his treatment
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Figure B.3: A cartoon of the emission region of the GRB on standard scenario of internal shock.

would fail to explain the GRB, he attained important work of shedding light to the radiation

mechanism for the high energy astrophysics.

B.2 Multi dimensional jitter radiation and Diffusive Syn-

chrotron Radiation

Fleishman (2006) claimed that the multi dimensional magnetic turbulence must be used for

the radiation spectra from the situation as we see in the former section. His treatment is based

on the sophisticated statistical method which was developed by Toptygin & Fleishman (1987).

It is a calculation method for radiation spectrum from a single relativistic charged particle and

ensemble of particles moving in very small or very large random electromagnetic fields1. There

1there is an inapplicable regime in intermediate scale for their treatment, which is shown in chapter 5
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treatment for small scale magnetic field is suitable for magnetic turbulence with a� 1.

First, we note that the treatment of the uniform and turbulent magnetic fields. They call

the components with k > k∗ small scale components, while the opposite large scale components.

The critical wavenumber k∗ is defined by somewhat ambiguous inequality R � k−1
∗ � R/γ,

where R is the local or mean Larmor radius. However, in reality they treat each component

for the calculation as k
−1 < R/γ small scale components

k−1 � R large scale components.

(B.4)

Thus, there is an ignored wavenumber region R/γ < k−1 < R. This is important for the chapter

5, because we investigate the radiation spectra for this intermediate scale turbulence. Hereafter

we define small scale/large scale components by equation (B.4), and we define components

with R > k−1 > R/γ as intermediate scale components. For large scale scale components,

the radiation is written by synchrotron radiation, therefore we omit the discussion. We show

the treatment by Fleishman (2006) based on Toptygin & Fleishman (1987) for the small scale

components. The superposition of the large and small components are discussed in chapter 5.

The formula for the radiation spectrum is the formula (B.1), which is same as Medvedev’s

treatments. We write it again for convenience.

dW

dω
=

e2ω

2πc3

∫ ∞

ω/2γ2

| ~wω′|2

ω′2

(
1− ω

ω′γ2
+

ω2

2ω′2γ4

)
dω′.

To get the Fourier components of the acceleration | ~wω′|, Fleishman treated it statistically, by

using correlation function of the turbulent magnetic fields as is shown below. We show short

review of his treatment. The orbit is approximated as rectilinear

~r = ~r0 + ~vt.

The force acting on the moving particle is expressed by

~F (~r0 + ~vt, t) =

∫
e−i(ωt−~k·~r0−~k·~vt) ~Fq0,~qdq0d~q. (B.5)
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Then the Fourier component ~Fω′ specifying the magnitude ~wω′ = ~Fω′/mγ is found by temporal

Fourier transformation. We write the square of ~wω′ as

|~wω′ |2 =
(2π)3

m2γ2V

∫
dq0d~qδ(ω

′ − ω + ~k · ~v)|~Fq0,~q|2, (B.6)

where V is the source Volume. Next we specify the field as a random static magnetic field as

~Fq0,~q = e2(δαβ − vαvβ/v
2)Bα

~q B
β
~q .

We introduce the second-order correlation tensor of the statistically uniform random magnetic

field as

K
(2)
αβ (~r) =

1

V

∫
d~RBα(~R)Bβ(~R + ~r), (B.7)

and the |~wω′ | is obtained from Fourier transformed correlation function. Substituting |~wω′| into

equation (B.1) and dividing it by the total duration time T , we get the radiation intensity:

dI

dω
=

e4

m2c3γ2

∫ ∞

1/2γ2

d

(
ω′

ω

)( ω
ω′

)2
(

1− ω

ω′γ2
+

ω2

2ω′γ4

)∫
d~qδ(ω′ + ~q · ~v)K(~q), (B.8)

where K(~q) = K
(2)
αβ (~q)(δαβ − vαvβ/v

2). By specifying K(~q), we get the radiation spectrum.

We show the spectral features using equation (B.8). We here consider the isotropic case

K
(2)
αβ ∝ (δαβ − qαqβ/q2)f(|~q|) with spectrum of the random magnetic field:

f(|~q|) =
q2

(q2
m + q2)µ/2+2

. (B.9)

It expresses a broken power law distribution with the break frequency of qm, the low frequency

side is B2(k) ∝ k4 and high wavenumber side is B2(k) ∝ k−µ. When µ = 5/3, the magnetic

field is the well known Kolmogorov turbulence. For ω � γ2qmc, the corresponding wavenumber

is much higher than qm. Integrating equation (B.8) with using power spectrum of turbulence

(B.9), one obtains dI/dω ∝ ω−µ. The high frequency component is from the resonance contri-

butions of the modes q = ω′/v. On the other hand, for ω � γ2qmc, the spectrum consists of

non resonant contribution of the mode qm. The integral of the corresponding part to making

the spectral index in equation (B.8) is∫
d~qf(|~q|)δ(ω′ + ~q~v) =

1

v

∫
dqydqzf(q2

y + q2
z + (ω′/v)2), (B.10)
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where we specify ~v = (vx, 0, 0). Since we now treat ω′ � qmc, the f(|~q|) very weakly depends

on ω′. Thus, dI/dω ∝ ω0 for the low frequency region than γ2qmc. Summarizing above, except

for the special configuration of ~k ‖ ~v, the radiation spectrum is Fω ∝ ω0 in lower frequency

region than γ2qmc, and Fω ∝ ω−µ in higher frequency region. He call the treatment above

perturbative Diffusive Synchrotron Radiation theory (DSR).

B.3 Beyond the perturbative DSR theory

The Fleishman’s treatment of DSR theory is appropriate under the approximation that the

magnetic turbulence is static and that the radiating particle is moving rectilinearly. These

are, of course, not general. When these assumptions does not hold, the radiation spectra

are significantly changed as we show as follows and in main part of this thesis. Moreover,

the electric field would also be generated at the shock region, which is demonstrated in PIC

simulations, for example Dieckmann (2005).

We firstly discuss the break of the approximation of the rectilinear trajectory, which is

also studied in Fleishman 2006. The condition k−1 < R/γ means only that the change of

deflection angle in the electron passing time of an eddy is smaller than 1/γ. Therefore, when

the particle moves longer scale, the observer may be off the typical beaming cone. As a result,

the approximated formula breaks down for the calculation of lower frequency region. Here

we estimate the break frequency by calculating the cumulative deflection angle by diffusion

approximation. The deflection angle in one deflection is defined as

θ0 = eBl0/γmc
2, (B.11)

where l0 is the length of an eddy. By equating cumulative deflection angle θc and 1/γ, obtain

θc =
√
Nθ0 =

1

γ
, (B.12)

where N is the number of the deflections. Using the equations (B.11) and (B.12), we estimate
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the timescale of which the rectilinear approximation breaks down as

1/T ∼ c

Nl0
∼ a

eB

mc
. (B.13)

Therefore, the break frequency for the observer is ∼ aγ2eB/mc2. We can imagine that the

lower frequency region than that would be dimmer, because the observer is off the beaming

cone in the longer time scale. In reality, the spectrum in lower frequency region than the

break frequency shows Fω ∝ ω1/2. More detailed description of this effect will be written in

Appendix C. As we firstly claimed, this discussion is made on the assumption of a < 1. Then,

what spectra will be obtained for a > 1? It means k−1 > R/γ, the intermediate region, which

is not treated by Toptygin and Fleishman (1987). The answer is shown in the chapter 5.

Next we shortly discuss on the time variability of the fields. We may have to consider the

time variability of the electromagnetic turbulence for the high energy astrophysical objects.

Because the thermal components of downstream plasma would have relativistic energy for the

relativistic shocks. Furthermore, the plasma instabilities which generate the electromagnetic

field are not only Weilbel/filamentation instability, but also two-stream instability which would

play a role in a certain condition (Bret et al. 2006). By this instability, the Langmuir turbulence

is generated, which consists of rapidly oscillating electrostatic waves (Langmuir waves). We

should not ignore the time variability of the background field in such a case. This is firstly

claimed by Gailitis & Chikhachev (1969), and a few researchers have calculated for limited

conditions. Fleishman & Toptygin (1987) performed the calculations of radiation spectra of

various characters of turbulence. However, the parameter range for calculation was limited.

B.4 Other studies

The basic picture of the radiation mechanisms from an electron interacting with background

magnetic field related to our study in this thesis is nearly completed in above sections. Lastly,

we review other researches about this topic after the Medvedev presented the idea of jitter
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radiation. First we show the applications of the jitter/DSR theory to the various high energy

astrophysical objects.

Medvedev and his collaborators cotinuously examined the GRBs and jitter radiation. The

time variability of the spectral hardness of prompt emission (gamma-ray) of GRBs is mod-

eled by the anisotropic magnetic turbulence and anisotropic velocity distribution of electrons

(Medvedev, Pothapragada, & Reynolds 2009). The light curve and spectral evolution are cal-

culated both for prompt emission and afterglow (Medvedev et al. 2007, Workman et al. 2008,

Morsony et al. 2009). They include many effects, such as the expansion of the shell, electron

cooling, and self absorption. They conclude that the light curve in some frequency range is

different from the synchrotron case. However, there is no advantage for the interpretation in

terms of jitter radiation. For example, some observation shows that afterglow decay in the

X-ray region is flatter than the theoretical prediction, or that the decay rates of the X-ray

region and optical region are different. The origin of such peculiar features of the afterglow of

GRBs has been unresolved. To argue this point would carry us too far away from the purpose

of this thesis, we stop discussion about it.

Fleishman and his collaborators applied DSR theory to many astrophysical objects. The

main point is that the power law index can be not from the energy distribution of the radiating

electrons but from the signatures of electromagnetic turbulence. We reviewed above that the

shape of higher frequency region than γ2ktypc is determined by turbulent field as

Fω ∝ ω−µ, (B.14)

where µ is the power index of the magnetic turbulence:B
2(k) ∝ k−µ for ktyp ≤ k ≤ kmax

0 others

(B.15)

When the condition s < 2µ + 1 is satisfied, where s is the power law index of the energy

distribution of electrons dN/dE ∝ E−s, the radiation spectra shows a broken power law shape.
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The break frequency is γ2
maxktypc. He noted that the interknot regions of AGN jet 3C273 and

M87 show broken power law spectra in radio region by this radiation mechanism (Fleishman

2006). Furthermore, they also interpret the broadband broken power law spectra of the pulsar

wind nebulae. It is well known that the radio spectrum of the Crab nebula is brighter than the

theoretical prediction on the assumption of the one zone model (cf. Kennel & Coroniti 1984).

Fleishman and Bietenholtz (2007) claimed that the radio components can be reproduced by

the DSR mechanism in the strong deflection regime. The important parameter of this strong

turbulence is expressed as

k−1
0 > mc2/eB. (B.16)

It clearly express that the turbulent field is in ”large deflection regime”. However, they used

perturbative formula to calculate the radiation spectra, so that it may be over simplified. They

apply this treatment to the GRBs. They create the histogram of the break frequency of the

broken power law spectrum (cf. Band function showen in chapter 2) and power law indices,

using randomly selected physical parameters from parent distributions. They argue that the

created histogram is consistent with the histogram made from observed spectra. However, the

corresponding parameter regime of the turbulence which they claim suitable for reproducing

the observation is in strong deflection regime. Therefore, this calculation must be recast by

using correct radiation spectra for the strong deflection regime. Moreover, they used static

magnetic field for this calculation, the time variability should be introduced.

Several papers inspired by the studies mentioned above have been published from the late

′00s. They discussed not only the applications to the observation, but also the fundamental

clarification of the radiation spectra. We review some of such important works.

Firstly, we review the important suggestion by Kirk & Reville (2010). They claimed the

maximum frequency of jitter radiation is lower than that of synchrotron radiation from an

accelerated electron in a relativistic shock region by DSA mechanism (Diffusive Shock Accel-

eration, cf. Drury 1983) in one zone model. This makes a caution that the radiation energy of

the jitter radiation has to be estimated with the attainable energy of the radiating electron.
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If we assume spatial scale of the field and electron energy independently, we can get any fre-

quency by jitter radiation. However, they showed that this is not correct for one zone case.

Their discussion is summarized as follows. We suppose that the relativistic electrons move in

the relativistic shock region, where isotropic turbulent magnetic field exist with strength and

the wavenumber characterized by the strength parameter a = eBλB/mc
2. For a kinetic reason,

the average energy gain per cycle is roughly factor of 2 (Achterberg et al 2001). Equating the

energy gain and the radiative loss in one cycle, we get the radiation energy limit:
~ωmax = (αfacrit)

−1mc2, for a < 1

~ωmax = a(αfacrit)
−1mc2, for 1 < a < acrit

~ωmax = α−1
f mc2, for a > acrit

(B.17)

where αf = e2/~c is the fine-structure constant, and acrit is the critical strength parameter,

which is the maximum attainable Lorentz factor and is typically much larger then unity.

The case a > acrit corresponds to λ � γmaxmc
2/eB, and all the electrons are transported

helically and cooled through the synchrotron radiation. The maximum value of the synchrotron

radiation does not depend on the magnetic field strength for this case. This is an important fact

for the Crab gamma ray flare, which is discussed in chapter 7. Furthermore, we emphasize that

this discussion is on the assumption that the emission region is isotropic, and this assumption

may not always be adopted.

From the view point of the analytical calculation of the radiation spectra from charged

particles moving in turbulent fields, the calculation methods have not been improved from the

Toptygin & Fleishman (1987). However, their kinetic equation is too complex to obtain the

analytical solution. Kelner et al. (2013) improved it and make it easy to treat analytically.

Their method is in the frame work of the perturbative treatment. Therefore, the validity range

for the strength parameter limited to a < 1. They treat the radiation for a > 1 is a simple

synchrotron formula. However, it is not rigorous treatment as is shown in chapter 5.

Using the analytical perturbative treatment, Mao & Wang (2012, 2013) tackled the obser-
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vational features of GRBs which are hard to reproduce by synchrotron radiation. In Mao &

Wang (2012), they claimed that the GeV excess of the prompt emission originates from jitter

self Compton (JSC) radiation. In Mao & Wang (2013), they calculated the polarization degree

of the jitter radiation on the assumption of 2-dimensional orientation of the magnetic field.

They claimed that the model can reproduce the high degree polarization which is reported

recently (Yonetoku et al. 2012). They proposed a possible scenario where the high energy

emission of GRBs is emitted by jitter mechanism.

Next we review the numerical approaches of the calculation of radiation spectra. Using

the numerical methods, we can calculate more general cases for electromagnetic turbulences.

Moreover, we calculate the radiation spectra for which any approximation is not applicable.

We take this approach as a main method for calculation in this thesis. The numerical approach

is firstly introduced by Hededal (2005), and our method is identical with it. This treatment is

most rigorous, but very numerically expensive.

Reville & Kirk (2011) focused attention on the PFT, and use very reasonable approxima-

tion. As a result, a cost of original Hededal’s method is cut significantly. They analytically

drived the fact that we do not have to pursue the motion in the very short time step defined by

the observing frequency. In the Hededal’s method, the time step is determined by the inverse

of highest frequency we intend to calculate. Reville & Kirk clarified that required time step de-

pends on the frequency. When we want to obtain Fω1 , we may use the time step roughly (PFT

for ω1)/25 for calculation. Therefore, we can use different time step for different frequency.

We can cut a cost drastically for highly relativistic case. For example, the typical frequency

of the synchrotron radiation is γ2eB/mc = γ2ωcyc, therefore the time step in the Hededal’s

method is ∼ (γ2ωcyc×10)−1), while in Reville’s method it is the order of ∼ (ωcyc×10)−1. Their

method is applicable when the deviation from the rectilinear orbit is not very large. For jitter

radiation regime a� 1, the deviation in PFT for ω is negligible for ω ∼ γ2k0c. For synchrotron

radiation regime a > γ, their method is also applicable for the frequency region ∼ γ2eB/mc,

because the deviation from rectilinear trajectory in the time scale of mc/eB is very small. To
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summarize, their method is applicable regardless of a, but the applicable range is limited to

higher frequency region and the frequency where the approximation becomes worse depends

on a. However, the deviation is proportional to 1/γ, therefore the wide range of the radiation

spectra can be calculated by this method for γ � 1.

We lastly note that Fleishman also developed fast calculation code, which, however, is opti-

mized for mildly relativistic particles. The radiation from mildly relativistic charged particles

gyrating in a > γ magnetic field is called as ”gyrosynchrotron radiation”, the spectrum for

which shows higher harmonics clearly, and it is observed in solar or stellar flares. Although

this radiation mechanism apparently unrelated our study in this thesis, it is important for the

deep understandings.





Appendix C

Physical Interpretations of Spectral

Indices in Various Regions Considered

in this Thesis

In this appendix C, we show the examples of the interpretation of the spectral indices for

various parameter ranges. The review of other researcher’s interpretation and our original

interpretation is given.

C.1 Undulator

The Undulator is an insertion device of the intense high energy emission, which is shortly

reviewed in Appendix A. Here we show the spectral indices of the Undulator spectrum.

We assume a relativistic electron moving toward z-direction, and magnets are line upped

along z axis with the gaps of the λ = 2π/k0. The electron deflects in the x-direction and the

deflection angle θdef is much smaller than 1/γ. In the mean velocity (of radiating electron)

111
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frame, the electron can be regarded as a simple harmonic oscillator

x′ = A sin(k′βct′),

where k′ = γk0 is the wavenumber of the radiation in this frame, and A is a constant. The

radiation from it is the dipole radiation, and the frequency of it is ωdp ' k′c in this frame,

where we approximate β ∼ 1. The emitted energy per unit time into unit solid angle is

dP ′

dΩ′ =
e2c

8π
k′4A2 sin2 Θ, (C.1)

where Θ = ~n′ · ~̈x′ is the angle between the emission direction and second derivative of the dipole

moment. We transform the radiation to the observer frame and make a few approximation for

γ � 1, such as β ∼ 1− 1/2γ2, we get

d3P

dχdkdφ
=
e2cγ4k4

0A
2

2π

[
(1− χ2) + 4χ sin2 φ

(1 + χ)4

]
δ[k(1 + χ)− 2γ2k0], (C.2)

where χ = (γθ)2 is an angle variable, δ[· · · ] is the Dirac delta function, and θ′ and φ′ are

Lorentz transformed θ and φ, respectively. The orientations of θ and φ are depicted in Figure

C.1. We note that there is a correlation between θ and frequency. We integrate of φ and χ in

the integration range 0 < χ < χmax, and we get the radiation spectrum:

dP

dν
= P0[ν(1− 2ν + 2ν2)], (νmin < ν < 1) (C.3)

where P0 is a normalization constant, ν = kc/2γ2k0c is the normalized frequency, and νmin =

1/(1 + χmax). We note that we implicitly assumed θ � 1, so that χmax cannot be much larger

than 1/γ. The peak frequency of this spectrum is ν = 1 (ωmax = 2γ2k0c). The spectrum

in frequency region lower than peak (ν � 1) is dP/dν ∝ ν1, while the spectrum shows

abrupt cutoff above the peak. We note that the spectrum shows dP/dν ∝ ν3 in the very

narrow frequency range slightly lower than the peak (ν . 1). The radiation in this frequency

range corresponds to the very small angle θ � 1/γ. Summarizing above, the radiation from

Undulator is a dipole radiation with frequency γ2k0c in the mean velocity frame. The spectral
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Figure C.1: Coordinate for consideration of radiation spectrum. The electron trajectory is on the

x− z plane

feature in the observer frame originates from relativistic aberration. We note that the angle

integrated radiation spectra of the inverse Compton scattering also have same spectral index

of 1, since the physical condition resembles Undulator.

C.2 Jitter radiation

We next discuss the spectral indices of the jitter radiation. Altouhgh the jitter radiation is

firstly proposed by Medvedev (2000), the concepts of the physical mechanism have been studied

earlier by several researchers such as Landau & Lifshitz (1971), Toptygin & Fleishman (1987).

Fleishman (2006) pointed out this fact and he call this mechanism DSR. For simplicity, we

here adopt ”jitter radiation” as the name of this process, but there is no difference between

jitter radiation and DSR in a broad sense.
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C.2.1 One-dimensional jitter radiation

The mechanism which makes spectral feature of Pω ∝ ω1 for one-dimensional jitter radiation

is same as that of Undulator. Medvedev (2000) assumed one dimensional dependence of

the turbulence and the radiating charged particle moves along the wavevector. Rigorously

speaking, a further constraint that the narrow range of the Fourier modes of around the

typical wave number dominates the turbulence was adopted. Therefore, the spectral shape

becomes Pω ∝ ω1 under almost the same condition as Undulator.

C.2.2 Multi dimensional jitter radiation

We next discuss the jitter radiation from an electron in a multi dimensional turbulence, i.e.,

the magnetic field is depicted as
∑ ~Bi(~ki). The spectrum shows the feature Pω ∝ ω0 for

isotropic turbulence. This spectral shape emerges in frequency region lower than 2γ2ktypc.

This is the standard radiation signature of jitter radiation, since the turbulences have multi

dimensional structure, and the radiation spectra from ensemble of electrons with isotropic

velocity distribution mimic angle integrated spectra. From this view point, even if the direction

of wave number is one dimensional, the radiation from ensemble of particles realizes this

Fω ∝ ω0 radiation spectrum. The reason of it is seen as follows.

We have already reviewed the analytical DSR and derived Pω ∝ ω0 in Appendix B. There-

fore, we show more intuitive explanation here. From equation B.8, we extract important part

for the frequency region lower than γ2ktypc.

dP

dω
∝
∫ ∞

1/2γ

d

(
ω′

ω

)( ω
ω′

)2
∫
d~qδ(ω′ + ~q · ~v)K(~q) (C.4)

We see the second integral as an interaction the electron with field. When the second integral

does not depend on ω′, that is, there is non-resonant contributions of the field to the electron,

the spectrum becomes dP/dω ∝ ω0. This can be satisfied when ω′ � ktypc in a turbulence

with multi dimensional dependence, because the power law distribution of the turbulence has

a peak at ktyp, so that the value of second integral weakly depends on the ω′.
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We note that the dP/dω ∝ ω1 is easily derived form this equation when we assume a

perfectly harmonic motion. The electron trace a simple harmonic motion as Undulator with

wavenumber qund, the second integral is proportional to∫
d~qδ(ω′ + ~q · ~v)δ(~q − ~qund) = δ(ω′ + ~qund · ~v). (C.5)

We substitute it to the equation (C.4), we get dP/dω ∝ ω1 spectrum.

The spectrum Fω ∝ ω−µ in frequency region higher than γ2ktypc is also understood easily.

The index µ is from the power law index of the turbulent field B2(k) ∝ k−µ. For ω′ > ktypc,

the power law distribution for the high wavenumber region is B2(k) ∝ k−µ. Therefore, the

Fourier amplitude of the acceleration is ∝ k−µ. As a result, we obtain dP/dω ∝ ω−µ. In other

words, the field components for k = ω′/v resonantly contribute to make a radiation spectrum.

C.2.3 LPM effect on the jitter radiation

We lastly show the interpretation of Fω ∝ ω1/2. It is from the break of the perturbative

approximation, which is well known as LPM effect (Landau & Pomeranchuk 1953, Migdal

1956). Here, we derive the index of 1/2 on the assumptions that the deflection is written

by a part of the circular orbit, and the deflection angle in one deflection θdef = eσ
γmc2

λ, that

the strength parameter is a < 1, and that the angle deflection of electron can be written in

diffusion formula.

Consider an electron moving toward the observer at t = 0. The angle between the direction

toward observer and the electron velocity at t is denoted by θ. The probability of θ being in

a range [θ, θ + dθ] is written by using diffusion approximation:

P (θ, t) =
1√

4πDt
exp

(
− θ2

4Dt

)
dθ, (C.6)

where D is the diffusion coefficient

D = θ2
def/2τ, (C.7)
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and τ = λ/c is the PFT of the jitter frequency of γ2ktypc. When θ & 1/γ, the observer is out

of the beaming cone, and the observed emission becomes dimmer. We substitute θ = 1/γ into

the exponential function. The index is rewritten as

1/γ2

4Dt
=

1

2at

mc

eσ
. (C.8)

We can approximate exponential part as 1 for the time t� 1/aωst, which is satisfied when we

see the frequency region lower than aγ2ωst. We approximated the probability as

P (θ) ∼ 1√
4Dt

∝ t−1/2.

Using this approximated probability, we obtain the spectrum of Fω ∝ ω1/2. When we consider

ensemble of electrons in [θ0, θ0 + dθ], the electron number N which is in this angle range

decreases with time N ∝ t−1/2. We assume θ0 = 0, i.e., the electrons are moving toward

observer at t = 0, and γ � 1, so that the observer is off the beaming cone when θ becomes

slightly large. In this situation, the electrons which illuminate the observer decrease with t−1/2,

therefore, the flux decreases with ∝ t1/2. When we consider the turbulence, the electrons not

only be off but also be in the line of site. Therefore, the correlation flux and the time span of

illumination by an electron is interpreted by using Fourier transformation as Fω ∝ ω1/2.

C.3 DRL: small deflection regime

For the Langmuir turbulence, the spectrum Fω ∝ ω1 can be realized even if the turbulence

has multi dimensional dependence. The condition for realization of this spectrum is that the

field oscillation frequency ωw is the higher than ωst and ω0. The reason is understood by the

analogy of the 1D jitter radiation. Since the field oscillation frequency does not depend on the

direction, the changing rate of direction is the same for each electron. Moreover, we use 3D

isotropic turbulence in this thesis. Therefore, the physical condition for electron is same as we

discuss in the former section for spatial fluctuation. This condition is expected to realize in
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Figure C.2: The radiation spectrum of the DRL. The peak frequency is γ2ωp, which comes from the

field oscillation effects. The highest frequency region and lowest frequency region is from the effects

of spatial fluctuation.

the high energy astrophysical object when Langmuir turbulence is generated by two stream

instability.

As we see in chapter 6, Fω ∝ ω1 does not extend to lower frequency region, and emerges

Fω ∝ ω0 spectrum (Figure C.2). The reason can be understood by considering the origin

of these spectral shape and the radiation power comes from each radiation mechanism. The

spectral shape of Fω ∝ ω1 is caused by field oscillation, so that the spectral power at some

frequency ω1 is beamed dipole radiation, where we assume ω1 < γ2ω0 < γ2ωp. Thus, this

radiation comes from electrons moving with some angle toward the observer. The spectral

power is proportional to σ2, because we assume all the components of the turbulent field

has same frequency. On the other hand, the spectral shape of Fω ∝ ω0 is caused by spatial

fluctuation. The spectral power at ω1 is dominated by the radiation from the electrons moving
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toward observer with ~ktyp · ~v = ω1/2γ
2. The spectral power is proportional to B(ktyp)dk.

Therefore, the spectral shape changes from Fω ∝ ω1 to Fω ∝ ω0 at the frequency where

the spectral power of strongly beamed radiation originating from spatial fluctuation of a few

Fourier components of turbulent field dominates the weakly beamed radiation originating from

field oscillation of all the components.

C.4 Wiggler radiation: low frequency

The Wiggler spectrum shows Fω ∝ ω1/3, which is also seen in synchrotron radiation. The

mechanism which makes this signature is somewhat different from that for other spectral

signatures, which are explained above. The spectral signatures of Fω ∝ ω0, Fω ∝ ω−µ, and

Fω ∝ ω1 are on the assumption that the electrons always illuminate the observer. Moreover, the

spectral shape Fω ∝ ω1/2 can be interpreted by simple picture that the electrons is out of the

line of sight after multiple deflection. Therefore, we used almost one dimensional trajectory. On

the other hand, we have to use at least two dimensional trajectory for the radiation signature

for this Fω ∝ ω1/3 case, because the shape of deflection is essential factor to determine the

spectral index of 1/3.

To explain the index 1/3, we assume the circular trajectory in the time scale of Nmc/eB,

which is N/γ of the gyro time, where N is a real number. We assume γ � N , so that the

trajectory we see is a part of the circular orbit. The trajectory is assumed on the x − y

plane. We consider the radiation from this electron, the trajectory and coordinate we use

for calculation is depicted in Figure C.3. We start the interpretation of the spectral index

of 1/3 from the equation (A.11) we used for the numerical calculation. The argument of the

exponential is

ω

(
t− ~n · ~r(τ)

c

)
∼ ω

2

[(
1

γ2
+ θ2

)
t+

c2

3r2
L

t3
]
, (C.9)

where rL is a curvature radius, and we approximate third order of the cτ/rL. The first order

and third order is comparable for τ ∼ mc/eB, but fifth order is 1/γ2 times smaller than them.
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Figure C.3: Coordinate we use for calculations of radiation spectrum. Blue filled circle represent a

radiating electron, and ~n is the radiation direction we consider. θ is the angle between ~n and x axis.

We rewrite the equation (A.11) as

d2I

dωdΩ
=
e2ω2

4π2c

∣∣−ε‖A‖(ω) + ε⊥A⊥(ω)
∣∣2 , (C.10)

where ε‖ and ε⊥ are unit vector with direction is depicted in Figure C.3. A‖ and A⊥ are written

by modified Bessel functions, so that we get the radiated energy per frequency per unit solid

angle is

d2I

dωdΩ
=

e2

3π2c

(
ω2r2

L

c

)2(
1

γ2
+ θ2

)2 [
K2

2/3(ξ) +
θ2

(1/γ2) + θ2
K2

1/3(ξ)

]
, (C.11)

ξ =
ωrL
3c

(
1

γ2
+ θ2

)3/2

. (C.12)

Since the K2/3(ξ) term dominates in equation (C.11), we see the frequency dependence in low

frequency region for θ = θ1 = const by using K2/3(ξ). We use asymptotic behavior for Bessel
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function

K2/3(ξ) ∝ ξ
2/3 for ξ � 1 (C.13)

since ξ � 1 means low frequency. As a result, we get the radiation spectra for an observer in

the particular direction is

d2I

dωdΩ

∣∣∣∣∣
θ=θ1

∝ ω2/3. (C.14)

We note that this index of 2/3 is harder than 1/2 which we obtained by using angle diffusion.

We can understand it by comparing two cases with the same field strength σ, a < 1 for one

and a > 1 for the other. The beaming cone sweeps for a > 1 is more quickly than a < 1 cases.

Therefore, the intensity is weaker for a > 1 than for a < 1 for the same PFT, i.e., for the same

frequency. Thus, the spectrum for a > 1 is harder than for a < 1.

The modified Bessel function K2/3(ξ) is very small for ξ � 1. From this property, we define

the radiation angle for given frequency by using the constraint ξ(θc) = 1 as

θc =

(
3c

ωrL

)1/3

∝ ω−1/3. (C.15)

Using equations (C.14) and (C.15), we can approximate the angle integrated, well known

spectral shape:

dI

dω
= 2π

∫ π/2

−π/2

d2I

dωdΩ
cos θdθ ' 2π

∫ ∞

−∞

d2I

dωdΩ
dθ. ∼ 2πθc

d2I

dωdΩ

∣∣∣∣∣
θ=0

∝ ω1/3. (C.16)

We note that the emission energy is highly concentrated into small θ, since γ � 1.

We organize the points of the mechanism which makes the index 1/3.

• In the retarded effect which is written in exponential part of the equation (A.11), the

third order of vt/rL is mainly contribute as first order of it. The First order and third

order of vt/rL is both contribute for making the spectrum in low frequency region.

• For fixed angle θ, the radiation spectra is d2I/dωdΩ ∝ ω2/3.

• For fixed frequency, the radiation spreading angle θc ∝ ω−1/3.
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• The angle integrated spectrum is obtained by superposing of angle fixed spectrum, and

make it softer, since the low radiation is emitted relatively large solid angle. As a result,

the spectrum becomes dI/dω ∝ ω1/3.





Appendix D

Turbulent Electromagnetic Field

In this appendix D, we show the electromagnetic turbulence which is expected to be generated

in the emission regions of high energy astrophysical objects. Electromagnetic turbulences are

generated by plasma instabilities where the velocity distribution of particles is not Maxwellian,

such as shock region and magnetic reconnection region. We firstly show the electromagnetic

turbulences in PIC simulations. We secondly review plasma instabilities by using linear anal-

ysis.

D.1 Electromagnetic turbulences in PIC simulations

Particle-In-Cell code is a particle code which treats electrons and ions as individual particles.

It is suitable to treat kinetic plasma instabilities. We first show the simulations of relativistic

collisionless shocks by Sironi & Spitokovsky (2009) in Figure D.1. They use an open PIC

code TRISTAN-MP (Buneman 1993) to simulate a relativistic shock propagating into an

unmagnetized pair plasma. This shock is triggered by reflecting an incoming cold flow off

a conducting wall at x = 0. Therefore, this simulation is performed in downstream frame.

The incoming flow propagating along −~x with Lorentz factor γ0 = 15. The spatial scale

is normalized by non relativistic inertial length c/ωp. There is a shock front at x = 1000.

123
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Figure D.1: Shock structure produced using 2D PIC simulation by Sironi & Spitkovsky (2009).

(a) Number density in the simulation plane, normalized to the upstream density. (b) Transversely

(y-direction) averaged density. (c)-(d) Magnetic and electric energy density in the simulation plane,

normalized to the upstream kinetic energy density. (e) Transversely averaged magnetic (black) and

electric (red) energy density.

The magnetic field is generated around the shock front, and electric field is also generated in

this frame. The characteristic transverse (y-direction) spatial scale is ∼ 10c/ωp, and energy

conversion ratio from kinetic to electromagnetic is order 0.1. Not negligible amount of energy

density is converted to the small scale electromagnetic field.

The magnetic reconnection is also an energy conversion process, which converts magnetic

energy to the kinetic energy by rearranging magnetic field topology (Sweet 1958, Parker 1957
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Figure D.2: Left panel: The initial magnetic field By is shown in x− y plane. The coordinates are

normalized by Debye length, which is 1/(2
√

2× inertial length. Right panel: The Bz component of

the formed electromagnetic field.

and Petscheck 1964). This process involves not only dissipation of magnetic field but also

generating electromagnetic field. For example, simulation results which shows magnetic field

generation by Weibel instability are shown by Zenitani & Hesse 2008, Swisdak 2008. Moreover,

the reconnection jets would form a counter streaming configuration. It would become a gener-

ation site of electromagnetic field, because the velocity distribution is unstable as we show in

next section. We next show our results of non-relativistic magnetic reconnection in Figure D.2.

We perform this simulation by using an open code of pCANS (http://www.astro.phys.s.chiba-

u.ac.jp/pcans/). We set multi Harris current sheets, which mimics Parker spiral (Parker 1958),
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which is seen in heliosphere. The relativistic wind with striped magnetic field is called ”Striped

Wind” (Coroniti 1990), which is thought to blow from the pulsars. We here use non relativis-

tic pair plasma, and simulate multi current reconnection. The initial condition is as follows.

Ten current sheets are set in y − z plane alternately with width equating inertial length c/ωp,

and the current density ~j is along ±z. This configuration is unstable to the tearing-mode

instability. These current sheets instantaneously reconnect and form the turbulence. We show

the initial configuration of magnetic field By in left panel of Figure D.2 and Bz component of

formed electromagnetic turbulence in right panel. The spatial scale is about 10c/ωp, and the

maximum strength is around 50% of the initial magnetic field strength.

D.2 Linear analysis

We shortly review the instabilities which we assume in this thesis. First, we derive dispersion

relation of waves for unmagnetized plasma. We can neglect background magnetic field when

the timescale is shorter than cyclotron period. It can be achieved in many astrophysical

objects. Next, we drive electromagnetic Weibel/filamentaion instability and electrostatic two-

stream instability. In general, these instabilities couple (Bret et al. 2004), while we treat them

separately for simplicity.

D.2.1 Dispersion relation

The linearized Maxwell equations for electric field δ ~E and magnetic field δ ~B are given as:

∂

∂t
δ ~E = c∇× δ ~B − 4πδ~j, (D.1)

∂

∂t
δ ~B = c∇× δ ~E, (D.2)

where δ~j and c are current density and speed of light. In the plasma, the current corresponding

to the electric field appears. When the electric field is small, the current is expressed by Ohm’s
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law,

δ~j =←→σ · δ ~E, (D.3)

where←→σ is the electric conductivity tensor and obtained from linearized Boltzmann equation.

Performing Fourier expansion of δ ~E, δ ~B, and δ~j, equations (D.1), (D.2), and (D.3) are reduced

as follows:

0 =
←→
D (~k, ω) · δ ~Ek (D.4)

←→
D (~k, ω) ≡

←→
I +

4πi←→σ
ω
−
(
ck

ω

)2
(
←→
I −

~k
⊗~k

k2

)
, (D.5)

where ~Ek is the Fourier amplitude of the mode (~k, ω).

To obtain ←→σ , we use linearized collisionless Boltzmann equation. Since we here treat

unmagnetized plasma, background electromagnetic field is zero. Then, it is written as

∂

∂t
δfs + ~v · ∇δfs +

qs
ms

(
δ ~E +

~v

c
× δ ~B

)
· ∇vfs,0 = 0, (D.6)

where qs, ms, δfs, and fs,0 are the particle charge, particle mass, perturbation of the distri-

bution function, and the background distribution function, respectively, and the subscript ”s”

represent particle species. The current δ~j is given by

δ~j =
∑

s

∫
qs~vδfsd

3v. (D.7)

Performing the Fourier expansion of δ ~E, δ ~B, and δfs, from (D.1), (D.2), (D.3), (D.6), and

(D.7), ←→σ is written as

←→σ = −
∑

s

qs
imsω

[
ns,0 −

∫
(~k · ∇vfs,0)

~v
⊗
~v

ω − ~k · ~v
d3v

]
, (D.8)

where ns,0 =
∫
fs,0d

3v is the number density. Once the distribution function fs,0 is given, we

can calculate above ←→σ and solve the dispersion relation (D.4).

The terminology of the instabilities we treat below is somewhat confusing. We define

the orientations of electric/magnetic field and wavevector for each instabilities according to
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Figure D.3: Weibel, two-stream, and filamentation modes.

Bret et al. (2005). We depict them in figure D.3. However, it is widely recognized that

the filamentation mode is identical to the Weibel instability, and they are in electromagnetic

modes. Therefore, we call them ”Weibel instability”. On the other hand, the name ”two stream

instability” is sometimes used for electromagnetic mode, but originally it is an electrostatic

mode. Thus, we call ”two-stream instability” as an electrostatic mode only.

D.2.2 Weibel (filamentation) instability

The Weibel instability is firstly introduced by Weibel (1959), which produces transverse waves

with an important magnetic component growing aperiodically, i.e., the real frequency ωr = 0

and growth rate ωi > 0. We derive the growth rate on the assumption that non-relativistic

electron-ion plasma which has anisotropic temperature. The physical picture and condition

in high energy astrophysical objects may be somewhat different from it. For example, the
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emission region we assume is relativistic shock region. The plasma is expressed as two counter

streaming beams, furthermore, the plasma is usually relativistic. The dispersion relation for

counter streaming beams is almost identical to the one of the Weibel instability for thermal

velocity ∼ streaming beam velocity. As for the relativistic effects, although the growth rate of

Weibel instability in relativistic regime is larger than in non relativistic regime, the physical

mechanism is same as non-relativistic regime. Therefore, we consider Weibel instability in

non-relativistic anisotropic plasma, and we show the relativistic correction after that.

We here define the x-direction as the wave vector direction. For simplicity, we assume that

the distribution function of each species fs,0 is the Maxwell distribution with the drift velocity

of the y-direction,

fs,0 =
ns,0

π3/2v3
th,s

exp

[
−v

2
x + (vy − vd,s)

2 + v2
z

v2
th,s

]
, (D.9)

where vth,s = (2kBTs/ms)
1/2 is the thermal velocity and vd,s is the drift velocity. Substituting

it to the equation (D.8), the dispersion relation (D.4) becomes

0 = 1−
(
ck

ω

)2

−
∑

s

ω2
p,s

ω2
+
∑

s

ω2
p,s

ω2

[
2 +

(
vd,s

vth,s

)2
]

(1 + ξsZ(ξs)), (D.10)

Z(ξs) ≡
1

π

∫ ∞

−∞

1

z − ξs
e−z2

dz, (D.11)

ξs =
ω − kvd,s

kvth,s

, (D.12)

where Z(ξs) is the plasma dispersion function.

Next, we consider the most simple condition for Weibel instability for example. We assume

counter streaming cold electron-proton plasma. Their distribution functions are

fe−,0 = ne[δ(vy − vd) + δ(vy + vd)]δ(vx)δ(vz), (D.13)

and

fp−,0 = ne[δ(vy − vd) + δ(vy + vd)]δ(vx)δ(vz). (D.14)
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The dispersion relation (D.10) becomes

0 = 1−
(
ck

ω

)2

− 2
(ωp,e

ω

)2

−
(ωp,e

ω

)2
(
kvd

ω

)2

, (D.15)

where we neglect the contribution of protons because of ωp,e � ωp,p. The maximum growth

rate is

Im[ω] =
(vd

c

)
ωp,e at k � ωp,e

c
(D.16)

We see the typical value for growth rate is ωp and unstable wavelength is c/ωp.

In relativistic plasma, although the plasma frequency becomes ωp,rela =
√

4πne2/γm, the

features are unchanged. For example, the same signature on growth rate and unstable wave-

length can be seen for anisotropic relativistic plasma (Yoon & Davidson 1987). In their treat-

ment, the anisotropic electron distribution functions are

fe,0 =
1

2πp⊥
δ(p⊥ − p̂⊥)

1

2p̂z

H(p̂2
z − p2

z), (D.17)

where pz, p⊥ and H(x) are momentum of z-direction, momentum of perpendicular to z-

direction, and Heaviside step function, respectively. The protons are assumed as stationary.

For p‖ � p⊥, the maximum growth rate Γmax and corresponding wave vector of the fastest

growing mode kmax are

Γmax ∼ ωp,rela (D.18)

kmax ∼
ωp,rela

c
(1− β2

⊥)1/4, (D.19)

where β⊥ = p⊥/γmec is the perpendicular velocity per light speed. As you see above, the

growth rate and corresponding wavelength are nearly plasma frequency and inertial length,

respectively.

If the gyro frequency is much smaller than the plasma frequency at the unperturbed state,

the assumption that unmagnetized plasma which we take in this Appendix D is justified

because the growing time ∼ 1/ωp is much shorter than gyration time. It is usually achieved

for the initial condition, and it is also maintained in the saturation level. The saturation level
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is limited by Alfven critical current (Alfven 1939, Kato 2005). The critical current for the

column current is determined as

IA =
γmc2v

e
, (D.20)

which does not depend on the radius of the column. We calculate the magnetic field strength

on the surface of the column when the I = IA and the radius is inertial length.

BA '
γmcωp,rela

e
(D.21)

We drive the condition
eB

γmc
. ωp,rela. (D.22)

Therefore, the gyro frequency is always smaller than plasma frequency, i.e., growth rate, when

the initial condition is ωcyc < ωp.

D.2.3 Two stream instability

The two stream instability has a broad meaning for the electrostatic instability which occurs

when two species of plasma have relative drift velocity. Furthermore, sometimes the term is

used for electromagnetic instabilities as we showed above. We here use narrowly-defined term

as the instability resulting from coupling with the beam mode and the Langmuir plasma mode.

We first assume the distribution function of each species fs,0 is Maxwell distribution with the

drift velocity of the x direction,

fs,0 =
ns,0

π3/2v3
th,s

exp

[
−

(v2
x − vd,s)

2 + v2
y + v2

z

v2
th,s

]
. (D.23)

Then, the dispersion relation (D.4) becomes

0 = 1 +
∑ 2ω2

p,s

k2v2
th,s

[1 + ξsZ(ξs)]. (D.24)

We next simplify the condition that a cold electron beam (s=eb) in the cold electron-

proton plasma (s=p,e). This is three component plasma with drift velocity. We assume
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current neutrality, Because of the charge and current neutralities, the following conditions are

satisfied

0 = np − ne − neb, (D.25)

0 = npvd,p − nevd,e − nebvd,eb, (D.26)

where ns and vd,s are the number density and the drift velocity of each component. We here

chose background electron (s=e) rest frame, that is, vd,e = 0. Assuming |ξs| � 1, we get the

dispersion relation from equations (D.4) and (D.11)

0 = 1−
(ωp,e

ω

)2

−
(

ωp,p

ω − kvd,p

)2

−
(

ωp,eb

ω − kvd,eb

)2

. (D.27)

We assume np � neb (vdp � vdbe) and ω ∼ kvd � ωp,e, then growth rate γts = Im[ω] is

γts =
kvd,eb

1 + nbe/np

(
neb

np

)1/2

. (D.28)

As k becomes larger, the growth rate becomes large. On the other hand, the growth rate has

maximum value when ωe = ωbe for a given k, which means ve ∼ −vbe, i.e., the electron fluids

has two stream condition.

The two stream instability is considerably modified when the beam density is much less

than the density of the ambient plasma, nbe � ne. In the shock region of the high energy

astrophysical objects, the number of the reflected electrons is less than the number of bulk

electrons. Therefore, we next consider the case of nbe � ne. We introduce a new variable as

Ω = ω − ωp,e. (D.29)

Equation D.27 then reduces to

2Ω(ω − kveb)
2 − ωp,eω

2
p,eb = 0. (D.30)

Here we used the approximation that 1 − ω2
p,e/ω

2 ∼ 2Ω/ωp,e, for ω ∼ ωp,e. Furthermore, we

assume ωp,0 ∼ kvd,be, we get the frequency

ωwb = ωp,e

[
1 +

(
neb

2ne

)1/3
]
, (D.31)
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where ωwb is the frequency of the two stream instability in weak beam regime. The growth

rate is calculated as

γ =
√

3ωp,e

(
neb

2ne

)
. (D.32)

The growth rate is much lower than the case of nbe ∼ nbe. On the other hand, this is a high

frequency instability close to the back ground plasma frequency. Thus, weak beam excites

Langmuir wave at small growth rate. The general excitation processes have been on the

discussion (e.g., Dieckmann 2005, Bret et al. 2006). The Langmuir waves would be generated

in shock region.
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