Core-Collapse Supernovae: A Day after the Explosion

Annop Wongwathanarat Ewald Müller Hans-Thomas Janka ¢ Max-Planck-Institut für Astrophysik RIKEN

Figure from Janka et al. (2012)

Introduction

CCSNe = death of massive stars

collapse >> bounce >> shock formation >> stalled accretion shock

how to revive the stalled shock???

neutrino-driven mechanism

multi-D effects play important roles !!!

Introduction

Development of convective instabilities and SASI

3D self-consistent simulation by Florian Hanke (Hanke et al. 2013)

Introduction

- Evidences of mixing from observations of SN1987A; See review of Hillebrandt&Höflich (1992)
- Mixing of hydrogen to inner core and Ni to hydrogen envelope by light curve modelling (e.g., Utrobin 2004)
- Early occurrence of hard X-ray and γ –ray (e.g., Dotani+ 1987, Sunyaev+ 1987)
- High velocity feature of [FeII] line at 3900 km/s (Haas et al. 1990)
- Evidences of asymmetries in CCSNe
- Asphericity inferred from spectropolrimetric observations of SNIb/c & SNII-P (for review Wang&Wheeler 2008)
- large velocities of pulsar "kicks"
- Complicated structures in SNRs, e.g. Crab, Cas A
- Missing link between theories and observations

evolution

Previous works

- late-time CCSN simulations
- works by many groups in 1990s; e.g., Arnett+ 1989, Fryxell+ 1991, Müller+ 1991, Hachisu+ 1990, Yamada&Sato 1990, Herant&Benz 1992, Herant&Woosley 1994, Shigeyama+ 1996, Iwamoto+ 1997, Nagataki+ 1998
- mostly in 2D; grid-based and SPH
- spherical symmetric explosion (thermal bomb) + random perturbation
- difficult to obtain fast (>2000 km/s) Ni
- more recent works in 2D & 3D (e.g., Hungerford+ 2003,2005, Kifonidis+ 2000,2003,2006, Joggerst+ 2009,2010, Couch+ 2009, Hammer+ 2010, Ellinger+ 2012,2013, Ono+ 2013)

Explosion simulation

-2

-3

0

5

10

 M_r/M_o

15

He/H and metals/He interface can become RT unstable due to gradients of pressure and density having opposite signs Results

Wongwathanarat et al. (in prep.)

progenitor	3D	explosion	time	$E_{\rm exp}$	$avg_{(min)}^{(max)} R_s$	$M_{\rm Ni} (M_{{\rm Ni}+X})$	v _{max} (Ni)	$< v >_{1\%}$ (Ni)
type	model	model	[s]	[B]	[10 ⁶ km]	$[M_{\odot}]$	$[10^3 \mathrm{km s^{-1}}]$	$[10^3 \mathrm{km s^{-1}}]$
	W15-1-cw	W15-1	84974	1.48	$389^{(443)}_{(355)}$	0.05 (0.13)	5.29	3.72
RSG	W15-2-cw	W15-2	85408	1.47	393 ⁽⁴⁵⁸⁾ (349)	0.05 (0.14)	4.20	3.47
KSO	L15-1-cw	L15-1	95659	1.75	478 ⁽⁵³⁰⁾ (448)	0.03 (0.15)	4.78	3.90
	L15-2-cw	L15-2	76915	2.75	$475_{(458)}^{(500)}$	0.04 (0.21)	5.01	4.51
	N20-4-cw	N20-4	5589	1.65	$39.7^{(43.6)}_{(35.6)}$	0.04 (0.12)	2.23	1.95
BSG	B15-1-cw	B15-1	5372	2.56	$41.5^{(43.6)}_{(39.5)}$	0.05 (0.11)	6.25	5.01
000	B15-1-pw	B15-1	7258	1.39	$42.7_{(40.0)}^{(45.7)}$	0.03 (0.09)	3.34	3.17
	B15-3-pw	B15-3	8202	1.14	$48.1_{(44.7)}^{(51.1)}$	0.03 (0.08)	3.18	2.95
10^{10}								W15 L15 N20 B15
0			5	I		10		15
				Encl	osed mass	[M₀]		

Results

shock propagates according to blast wave solution (Sedov, 1959)

accelerates when pr³ decreases, and vice versa

time evolution of propagation of nickel-rich ejecta

Similar evolution for both progenitors

What makes the difference? How can the nickel-rich ejecta escape the reverse shock?

strong acceleration at He/H interface
>>> reverse shock forms ahead

slow nickel-rich ejecta >>> reverse shock forms ahead

How can the nickel-rich ejecta escape the reverse shock?

Kifonidis+ (2006)

Results

Distributions in velocity space

very efficient mixing metals close to shock

Conclusions

- perform 3D simulations of CCSN from shortly after core bounce until shock breakout
- evolution of early-time asymmetries associated with explosion mechanism depends on complex interplays between the asymmetries and the SN shock
- connects to the density structure of the progenitor star

Outlook

- more progenitors ??
- longer time evolution??

Utrobin et al. (in prep.)