r-process in neutron star mergers

Shinya Wanajo (RIKEN iTHES)

Y. Sekiguchi (YITP), N. Nishimura (Keele Univ.), K. Kiuchi, K. Kyutoku, M. Shibata (YITP)

Supernovae and gamma-ray bursts Augst 25-27, 2014, RIKEN Okochi Hall

contents

- 1. overview
- 2. mergers with neutrinos
- 3. r-process novae (kilonovae)

1. overview

origin of gold (r-process elements) is still unknown...

popular r-process scenarios

core-collapse supernovae (since Burbidge+1957; Cameron 1957)

n-rich ejecta nearby proto-NS

not promising according to recent studies SN and GRB

neutron-star mergers (since Lattimer+1974; Symbalisty+1982)

- n-rich ejecta from coalescing NS-NS or BH-NS
- few nucleosynthesis studies

SN nucleosynthesis in the depth

- a number of selfconsistent 2D SN models with vtransport are now
 - available
- very first result of SN nucleosynthesis with such models
- can we confirm production of light trans-iron nuclei (and beyond) ?

elemental abundances for each SN

innermost ejecta $(M_{\rm ei} \sim 0.01 \ M_{\odot})$ light SNe have **NSE-like** features (intermediate light trans-iron more produced) massive SNe have **QSE-like** features (Zn and Zr more produced)

Wanajo, Müller, and Janka 2014, in prep.

SN nucleosynthesis in the depth

- almost all light trans-iron elements (Zn to Zr) can be explained by the innermost SNe ejecta, but no r-process
- most of light trans-iron isotopes, including ⁴⁸Ca, ⁶⁴Zn, ⁹²Mo, and the radionuclide ⁶⁰Fe can be reasonably explained as well

ECSNe have particularly important roles

SN and GRB

SN neutrino wind: not so neutron-rich

- \mathbf{A} Y_e is determined by
 - $v_e + n \rightarrow p + e^ \overline{v}_e + p \rightarrow n + e^+$
- equilibrium value is

$$Y_{\rm e} \sim \left[1 + \frac{L_{\overline{\nu}{\rm e}}}{L_{\nu \rm e}} \frac{\varepsilon_{\overline{\nu}{\rm e}} - 2\Delta}{\varepsilon_{\nu \rm e} + 2\Delta} \right]^{-1},$$
$$\Delta = M_{\rm n} - M_{\rm p} \approx 1.29 \text{ MeV}$$

for Y_e < 0.5 (i.e., n-rich)

$$\varepsilon_{\overline{v}e} - \varepsilon_{ve} > 4\Delta \sim 5 \text{ MeV}$$
 if L_{ve} ≈ L_{ve}
 SN and GRB

is the answer blowing in the wind?

"history" of Y_e evolution: who is right?

supernovae can be the origin only if ...

the explosion is not due to neutrino heating (but, e.g., magneto-rotational jet; Winteler+2012) or our knowledge of neutrino physics is insufficient.

CAUTION!!! EXPLOSION MECHANISM IS STILL UNCLEAR...

r-process in the early Galaxy

all r-rich Galactic halo stars show remarkable agreement with the solar r-pattern

- r-process should have operated in the early Galaxy;
 - SNe 😃, mergers 😢 ?
- Astrophysical models should reproduce the "universal" solar-like r-process pattern (for Z ≥ 40; A ≥ 90)

what is "true" r-process ?

VLT observations give tight constraint for light-toheavy r-abundances (here [Sr, Y, Zr/Ba])

- Ilight-r/heavy-r] ≥ -0.3;
 no stars below this
 constraint
- "the true r-process" must make lighter relements with half the solar r-process ratio

NS merger scenario: most promising?

- coalescence of binary NSs expected ~ 10 – 100 per Myr in the Galaxy (also possible sources of short GRB)
- ✤ first ~ 0.1 seconds dynamical ejection of n-rich matter with M_{ej} ~ 10⁻³ – 10⁻² M_☉
- * next ~ 1 second neutrino or viscously driven wind from the BH accretion torus with $M_{\rm ej} \sim 10^{-3} - 10^{-2} M_{\odot}$

previous works: too neutron-rich ?

Goriely+2011 (also similar results by Korobkin+2011; Rosswog+2013) 10° 1.35–1.35M_o NS 1.35-1.35M NS Solar of 10^{-1} 1.20-1.50M NS 10^{-2} Mass fraction 10^{-3} mass fraction 10 10^{-6} 10^{-7} 50 100 150 200 250 A strong r-process leading to fission cycling 0.015 0.021 0.027 0.033 0.039 0.045 0.051 $Y_{\rm e}$ severe problem: only A > 130; tidal (or weakly shocked) ejection another source is needed for of "pure" n-matter with $Y_{e} < 0.1$ the lighter counterpart

2. mergers with GR and v

first simulation with full-GR and ν

- Approximate solution by Thorne's Moment scheme with a closure relation
- Leakage + Neutrino heating (absorption on proton/neutron) included

neutrino properties (Steiner's EOS)

mass ejection before (40%) and after (60%) HMNS formation; 70% ejecta reside near orbital

neutrino luminosities similar between $v_{\rm e}$ and anti- $v_{\rm e}$

neutrino mean energies similar between v_{ρ} and anti- v_{ρ}

nucleosynthesis in the NS ejecta

higher and wider range of Y_e (= 0.09-0.45) in contrast to previous cases Y_e (= 0.01-0.05)

higher and weder range of entropy per baryon (= 0-50) in contrast to previous cases (= 0-3)

*Y*_e = 0.2

mass-integrated abundances

❖ previous case: not in agreement with solar r-pattern (e.g., for A < 130)
 → also the case for NS-NSs with stiff EOSs and BH-NSs

★ this work: good agreement with solar r-pattern for A = 90-240
 → no need of additional (e.g., BH-torus) sources for light r-elements

3. r-process novae (or goldnovae)

r-process novae (kilonovae)

heating rate for the NS-NS ejecta

- heating rate for the mass-averaged abundances well fitted by the scaling law dq/dt ~ t^{-1.3} (as well as by the solar r-pattern case)
- but dependent on Y_e; there might be directional (polar to equatorial) differences

EM counterparts of GW signals

GW signal can be spatially resolved only ~ 100 deg² by KAGRA/a.LIGO/ a.Virgo (from 2017) → EM counterparts are needed

SGRBs events should be restricted due to narrow beaming

r-process novae detectable (by, e.g., Subaru/HSC) from all directions!

already found?

LETTER

doi:10.1038/nature12505

A 'kilonova' associated with the short-duration γ-ray burst GRB130603B

N. R. Tanvir¹, A. J. Levan², A. S. Fruchter³, J. Hjorth⁴, R. A. Hounsell³, K

Short-duration γ -ray bursts are intense flashes of cosmic γ -rays, lasting less than about two seconds, whose origin is unclear^{1,2}. The favoured hypothesis is that they are produced by a relativistic jet created by the merger of two compact stellar objects (specifically two neutron stars or a neutron star and a black hole). This is supported by indirect evidence such as the properties of their host galaxies³, but unambiguous confirmation of the model is still lacking. Mergers of this kind are also expected to create significant quantities of neutron-rich radioactive species^{4,5}, whose decay should result in a faint transient, known as a 'kilonova', in the days following the burst^{6–8}. Indeed, it is speculated that this mechanism may be the predominant source of stable r-process elements in the Universe^{5,9}.

Tanvir+2013, Nature, Aug. 29

r-process nova in the SGRB afterglow?

Hotokezaka+Tanaka...+Wanajo 2013; NS+NS models

- Iate-time excess NIR flux requires an additional component (most likely an r-process nova)
- the excess NIR indicates the NS-NS ejecta with M_{ej} ~ 0.02 M_☉
- additional late-time red transients in SGRBs should be observed

what is a smoking gun of the r-process?

summary and outlook

- NS mergers: very promising site of r-process
 - neutrinos play a crucial role (in particular for a soft EOS)
- still many things yet to be answered...
 - dependence on mass ratios of NSs and EOSs; how about BH-NS?
 - how the subsequent BH-tori contribute to the r-abundances?
 - can mergers be the origin of r-process elements in the Galaxy?