

2014 August 25th SNe and GRBs Conference @RIKEN

<u>Polarimetric observations of</u> <u>GRB afterglows</u>

Katsutoshi Takaki^a

(Research Fellow of Japan Society for the Promotion of Science)

With thanks to

- K. S. Kawabata^a, K. Toma^b, R. Itoh^a, R. Yamazaki^c, M. Yoshida^a
- a : Hiroshima University, Japan
- b : Tohoku University, Japan
- c : Aoyama-Gakuin University, Japan

© http://astroclock2010.wordpress.com/cosmic-timeline-11/

W hat is GRB?

Gamma-ray Burst; GRB

 \square Most energetic explosion in the universe ($\sim 10^{52}~{\rm erg}$)

 $\mathbf{2}$

Spectral evolution

-15.5

becoming SNe Ic

- **D** Occurring at **cosmological distance**
- Gamma-ray arises in the form of relativistic jet.
 We observe it along the axis of the jet.
- \square Long GRB (>2s) and short GRB (<2s)
- □ A part of long GRBs associate with SNe Ic

G RB afterglow

- A considerable fraction of GRBs show afterglows, in X-ray, optical, NIR, and radio wavelength.
- □ GRBs are relativistic events. "jetbreak" ~1d after the burst.

http://spiff.rit.edu/classes/phys240 /lectures/grb_pres/grb_pres.html

S tandard emission model

Synchrotron Radiationis most likely as prompt and afterglowreasons• consistent with non-thermal SED• easy to explain γ-ray LC

B asic ideas of GRB polarization

I mportant model 1

Random *B*-field in micro-scale + off-axis jet beaming effect

(Sari +99; Rossi +04; Granot +99 etc.)

I mportant model 2

Group of independent patches having coherent *B*-field

(Gruzinov & Waxman +99)

Many coherent patches (N~50) $P = \frac{70\%}{\sqrt{N}} \sim 10\%$

not canceled out completely

Possible to produce complicated P.D.

Independent from jetbreak \rightarrow high P.D. at early epoch ?

K anata telescope + HOWPol

Kanata telescope

- I Located Higashi-Hiroshima
- **I** Effective aperture 1.5 m
- ☐ Fair weather ratio ~50%
- Moving speed
 Azimuth axis 5 degree / s
 Altitude axis 2 degree / s
 Extremely fast as 1m-class

HOWPol

(<u>H</u>iroshima <u>O</u>ne-shot <u>W</u>ide-field <u>Pol</u>arimeter)

Polarization obs. with one exposure

Tertiary mirror makes polarization \rightarrow HA-depending model correction ($\sigma \sim 0.5\%$)

G RB auto-observation system

Since 2009, \sim 60 GRB with auto-observation system

ID	Time [s]	Publication
GRB 091208B	149 ~ 1286	Uehara +12, ApJL
GRB 111228A	$163 \sim 19000$	Takaki+ in prep.
GRB 121011A	92 ~ 5241	
GRB 130427A	$10000 \sim 30000$	
GRB 130505A	~10000	
GRB 140629A	73 ~ 12000	Takaki+ in prep.

i GRB 091208B $z = 1.063, T_{90} = 14.9 \pm 3.7 s$

ii GRB 111228A $z = 0.714, T_{90} = 101.2 \pm 5.4 s$

11 GRB 111228A Discussion Preliminary ^{%]}Prompt emission? **Reverse shock?** 15Possible? Hard? to explain with model 1 10 $\mathbf{5}$ 0 [d]10 0.010.1

12

- □ Zero-PD at very fast timing Most possible due to jetbreak Viewing angle? Jet surface size? Not standard optical LC shape → More complicated?
- □ X-ray shallow decay is just geometric effect?

Both GRBs are small PD at ~10⁴ s

 $GRB \ 140629A \quad {\rm z=unknown, \, T_{90} = 75.6 \pm 12.7 \; s}$ V

□ Multi-band LC **D** Very standard AG

- \square GRB polarization : 1 event / yr
- □ Still unclear, no uniformed picture
- □ More observation samples, especially early phase.