Polarimetric observations of GRB afterglows

Katsutoshi Takakia
(Research Fellow of Japan Society for the Promotion of Science)

With thanks to
K. S. Kawabataa, K. Tomab, R. Itoha,
R. Yamazakic, M. Yoshidaa

a: Hiroshima University, Japan
b: Tohoku University, Japan
c: Aoyama-Gakuin University, Japan
What is GRB?

Gamma-ray Burst; GRB

- Most energetic explosion in the universe (~ 10^{52} erg)
- Occurring at cosmological distance
- Gamma-ray arises in the form of relativistic jet. We observe it along the axis of the jet.
- Long GRB (> 2s) and short GRB (< 2s)
- A part of long GRBs associate with SNe Ic

http://www.batse.msfc.nasa.gov/batse/grb/duration/ (Hjorth+ 03)
A considerable fraction of GRBs show afterglows, in X-ray, optical, NIR, and radio wavelength.

GRBs are relativistic events. “jetbreak” ~1d after the burst.

http://spiff.rit.edu/classes/phys240/lectures/grb_pres/grb_pres.html
Synchrotron Radiation is most likely as prompt and afterglow reasons:
- consistent with non-thermal SED
- easy to explain γ-ray LC
Basic ideas of GRB polarization

- P.D. ~ max 70%
- no time variability

- local P.D. ~ max 70%
- P.D. become smaller with time
Important model 1

Random B-field in micro-scale + off-axis jet beaming effect

(Sari +99; Rossi +04; Granot +99 etc.)

From jet edge
- P.D. becomes zero at early time
- large P.D. amplitude

P.D. once becomes zero with jetbreak (at \sim 1day?)
Important model 2

Group of independent patches having coherent B-field

(Gruzinov & Waxman +99)

Many coherent patches ($N \sim 50$)

$$P = \frac{70\%}{\sqrt{N}} \sim 10\%$$

not canceled out completely

Possible to produce complicated P.D.

Independent from jetbreak

→ high P.D. at early epoch?

Locally Polarized
Kanata telescope + HOWPol

Kanata telescope
- Located Higashi-Hiroshima
- Effective aperture 1.5 m
- Fair weather ratio ~50%
- Moving speed
 - Azimuth axis 5 degree / s
 - Altitude axis 2 degree / s
 - Extremely fast as 1m-class

HOWPol
(Hiroshima One-shot Wide-field Polarimeter)

Polarization obs. with one exposure

Tertiary mirror makes polarization
→ HA-depending model correction
 \((\sigma \sim 0.5\%)\)
GRB auto-observation system

- Auto observation system
- High moving speed

Kanata telescope

HOWPol

- Only one exposure

Appropriate for GRB polarization observation

Since 2009, ~60 GRB with auto-observation system

<table>
<thead>
<tr>
<th>ID</th>
<th>Time [s]</th>
<th>Publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRB 091208B</td>
<td>149 ~ 1286</td>
<td>Uehara +12, ApJL</td>
</tr>
<tr>
<td>GRB 111228A</td>
<td>163 ~ 19000</td>
<td>Takaki+ in prep.</td>
</tr>
<tr>
<td>GRB 121011A</td>
<td>92 ~ 5241</td>
<td></td>
</tr>
<tr>
<td>GRB 130427A</td>
<td>10000 ~ 30000</td>
<td></td>
</tr>
<tr>
<td>GRB 130505A</td>
<td>~10000</td>
<td></td>
</tr>
<tr>
<td>GRB 140629A</td>
<td>73 ~ 12000</td>
<td>Takaki+ in prep.</td>
</tr>
</tbody>
</table>
GRB 091208B \(z = 1.063, T_{90} = 14.9 \pm 3.7 \) s

- Standard Afterglow
- Forward shock emission
- High PD is inconsistent with model 1

See Uehara et al. 2012 for detail.
GRB 111228A

$z = 0.714$, $T_{90} = 101.2 \pm 5.4$ s

- PD evolution
 - $>20\%$ at ~ 500 s
 - $\sim0\%$ at ~ 6000 s
 - $>10\%$ at ~ 15000 s

- PA rotated 90d
 (across origin in QU-plane)

(Takaki+ in prep.)
GRB 111228A Discussion

- Prompt emission?
- Reverse shock?

Possible? Hard? to explain with model 1

- Zero-PD at very fast timing
 Most possible due to jetbreak
 Viewing angle? Jet surface size?
 Not standard optical LC shape → More complicated?

- X-ray shallow decay is just geometric effect?
GRB 121011A \(z = \text{unknown}, \ T_{90} = 75.6 \pm 12.7 \text{ s} \)

- Started observation from very early (\(t = 92 \text{ s} \))
- Standard Afterglow
- Nearly zero PD (< 4%)

\[R_C \text{ magnitude} \]
\[P (\%) \]

Time since GRB (sec)
GRB 130427A & 130505A

GRB 130427A

\(z = 0.34, T_{90} = 162.8 \pm 1.4\) s

GRB 130505A

\(z = 2.27, T_{90} = 88 \pm 10\) s

Both GRBs are small PD at \(\sim 10^4\) s
GRB 140629A

- z = unknown
- $T_{90} = 75.6 \pm 12.7$ s

- Multi-band LC
- Very standard AG
- Small PD

Obtained with “OISTER”

Nearly zero-PD

(Takaki+ in prep.)
GRB polarization: 1 event / yr
Still unclear, no uniformed picture
More observation samples, especially early phase.