Supernova Shock Breakout and related topics

Akihiro Suzuki

Kyoto University, JSPS fellow

SNGRB 2014@riken, Aug 27, 2014

★ Introduction for SN shock breakout

★ Detected events, possible events

★ What can we learn from SN shock breakout

★ Our works

★ Summary

CORE CO

Core-collapse supernova

- collapse of Iron core
- ➡ core bounce
- shock formation and propagation in the star
- emerging from the surface
- expanding ejecta

Observations of SNe

Traditionally, optical observations probe the ejecta dynamics, abundance, etc

Early emission: we need to detect EM signals that we do

Core-collapse supernova

- collapse of Iron core
- ➡ core bounce
- shock formation and propagation in the star
- emerging from the surface
 (SN shock breakout)
- expanding ejecta

SN shock breakout

- ➡ UV/X-ray flash associated with the birth of an SN explosion
- It occurs when the strong shock having been generated at the iron core emerges from the stellar surface
- We can observe the SN through EM only after shock breakout

photon diffusion velocity Vdiff=c/ τ shock velocity Vs breakout condition c/ τ >Vs

★ Introduction for SN shock breakout

Detected events, possible events

★ What can we learn from SN shock breakout

★ Our works

★ Summary

SN 1987A

Blinnikov+(2000)

- most famous SNe @ magellanic
 cloud
- type II-peculiar
- decay phase of the breakout emission
- recombination lines from ions
 with high excitation energy: gas
 photoionized by breakout
 emission(UV flash)

SN 1987A

- most famous SNe @ magellanic
 cloud
- ➡ type II-peculiar
- decay phase of the breakout emission
- recombination lines from ions with high excitation energy: gas photoionized by breakout emission(UV flash)

Lundqvist&Fransson(1996)

XRF 080109/SN 2008D

➡ SN Ib @NGC2770 D=27Mpc

- Swift serendipitously
 observed an X-ray flash
 associated with the birth of
 the SN
- ➡ Lx~ a few×10⁴³ erg/s, duration~ 200-300 sec, Ex~10⁴⁶ erg

Soderberg+(2008)

SNLS-04D2DC

- Supernova Legacy Survey
- coincidence in time and position of an UV flash and a SN (@z=0.1854):

GALEX satellite archival data

PTF 09uj

- Palomar Transient Factory
- coincidence in time and position of an UV flash serendipitously observed by GALEX and the SN.
 - UV emission for 2 weak. too long?
 - spectrum: blue continuum, narrow H α line

Rest frame Wavelength [Å]

Ofek+(2010)

- sub-energetic class of long GRBs: relativistic shock breakout?
- only nearby events are detected, but event rate is rather high e.g., 230⁺⁴⁹⁰-190 Gpc⁻³ yr⁻¹ (Soderberg+ 2006), 100-1800 Gpc⁻³ yr⁻¹ (Guetta&Della Valle 2007)
 - They accompany broad-lined Ic SNe
 - Ex. GRB 980425/SN 1998bw, GRB 060218/SN 2006aj, GRB100316D/ SN2010bh

- sub-energetic class of long GRBs: relativistic shock breakout?
- only nearby events are detected, but event rate is rather high e.g., 230⁺⁴⁹⁰-190 Gpc⁻³ yr⁻¹ (Soderberg+ 2006), 100-1800 Gpc⁻³ yr⁻¹ (Guetta&Della Valle 2007)
 - They accompany broad-lined Ic SNe
 - Ex. GRB 980425/SN 1998bw, GRB 060218/SN 2006aj, GRB100316D/ SN2010bh

1)

- sub-energetic class of long GRBs: relativistic shock breakout?
- only nearby events are detected, but event rate is rather high
 e.g., 230⁺⁴⁹⁰-190 Gpc⁻³ yr⁻¹ (Soderberg+ 2006), 100-1800 Gpc⁻³ yr⁻¹ (Guetta&Della Valle 2007)
 - They accompany broad-lined Ic SNe
 - Ex. GRB 980425/SN 1998bw, GRB 060218/SN 2006aj, GRB100316D/ SN2010bh

	Luminosity L _{γ,iso}	Isotropic energy Eiso	Duration T ₉₀	peak energy E _p
GRB 980425 SN 1998bw	6×10 ⁴⁶ erg/s	9×10 ⁴⁷ erg	35 s	122 keV
GRB 060218 SN 2006aj	2×10 ⁴⁶ erg/s	4×10 ⁴⁹ erg	2100 s	4.7 keV
GRB 100316D SN 2010bh	5×10 ⁴⁶ erg/s	6×10 ⁴⁹ erg	1300 s	18 keV
cf. Liso~10 ⁵¹ erg/s. Eiso~10 ⁵²⁻⁵³ erg for standard GRBs				from Hjorth (20

- Their origin is still under debate....
- SN shock breakout emission from relativistic SNe (in a dense wind)? Campana+(2006), Waxman+(2007), Li(2007)
- Weak/Failed/Off axis-viewed jet? engine-activity? Pian+(2006), Soderberg+(2006), Toma+(2007)
- We need more events to constrain their origin, event rate, and so on

★ Introduction for SN shock breakout

★ Detected events, possible events

What can we learn from SN shock breakout

★ Our works

★ Summary

What can we learn from SN breakout?

light curve of shock breakout: spherical case

time

light curve of shock breakout: spherical case

light curve of shock breakout: spherical case

light curve of shock breakout: spherical case

light curve of shock breakout: spherical case

What can we learn from SN breakout?

light curve of shock breakout: spherical case

What can we learn from SN breakout?

→ large R→long duration ,low T, low v_{ej}

 $E_{int}/R \star^3 \sim aT^4$

$$\begin{split} T_{\rm se} &= 5.55 \times 10^5 \bigg(\frac{\kappa}{0.34 \ {\rm cm}^2 \ {\rm g}^{-1}} \bigg)^{-0.10} \bigg(\frac{\rho_1}{\rho_*} \bigg)^{0.070} \\ & \times \bigg(\frac{E_{\rm in}}{10^{51} \ {\rm ergs}} \bigg)^{0.20} \bigg(\frac{M_{\rm ej}}{10 \ M_{\odot}} \bigg)^{-0.052} \\ & \times \bigg(\frac{R_*}{500 \ R_{\odot}} \bigg)^{-0.54} \ {\rm K} \quad \bigg(n = \frac{3}{2} \bigg) \,, \\ E_{\rm se} &= 1.7 \times 10^{48} \bigg(\frac{\kappa}{0.34 \ {\rm cm}^2 \ {\rm g}^{-1}} \bigg)^{-0.87} \bigg(\frac{\rho_1}{\rho_*} \bigg)^{-0.086} \\ & \times \bigg(\frac{E_{\rm in}}{10^{51} \ {\rm ergs}} \bigg)^{0.56} \bigg(\frac{M_{\rm ej}}{10 \ M_{\odot}} \bigg)^{-0.44} \\ & \times \bigg(\frac{R_*}{500 \ R_{\odot}} \bigg)^{1.74} \ {\rm ergs} \quad \bigg(n = \frac{3}{2} \bigg) \,, \\ t_{\rm se} &= 790 \bigg(\frac{\kappa}{0.34 \ {\rm cm}^2 \ {\rm g}^{-1}} \bigg)^{-0.58} \bigg(\frac{\rho_1}{\rho_*} \bigg)^{-0.28} \\ & \times \bigg(\frac{E_{\rm in}}{10^{51} \ {\rm ergs}} \bigg)^{-0.79} \bigg(\frac{M_{\rm ej}}{10 \ M_{\odot}} \bigg)^{0.21} \\ & \times \bigg(\frac{R_*}{500 \ R_{\odot}} \bigg)^{2.16} \ {\rm s} \quad \bigg(n = \frac{3}{2} \bigg) \,, \end{split}$$

for RSG, Matzner&McKee(1999)

What can we learn from SN breakout?

→ large R→long duration ,low T, low v_{ej}

 $T_{\rm se} = 5.55 \times 10^5 \left(\frac{\kappa}{0.34 \text{ cm}^2 \text{ g}^{-1}}\right)^{-0.10} \left(\frac{\rho_1}{\rho_1}\right)^{0.070}$ $\times \left(\frac{E_{\rm in}}{10^{51} {\rm \, ergs}}\right)^{0.20} \left(\frac{M_{\rm ej}}{10 {\rm \, } M_{\odot}}\right)^{-0.052}$ $\times \left(\frac{R_*}{500 R_{\odot}}\right)^{-0.54} \mathrm{K} \quad \left(n = \frac{3}{2}\right),$ $E_{\rm se} = 1.7 \times 10^{48} \left(\frac{\kappa}{0.34 \text{ cm}^2 \text{ g}^{-1}}\right)^{-0.87} \left(\frac{\rho_1}{\rho_1}\right)^{-0.086}$ $\times \left(\frac{E_{\rm in}}{10^{51} \,{\rm ergs}}\right)^{0.56} \left(\frac{M_{\rm ej}}{10 \,M_{\odot}}\right)^{-0.44}$ $\times \left(\frac{R_*}{500 R_{\odot}}\right)^{1.74} \text{ ergs } \left(n=\frac{3}{2}\right),$ $t_{\rm se} = 790 \left(\frac{\kappa}{0.34 \text{ cm}^2 \text{ g}^{-1}}\right)^{-0.58} \left(\frac{\rho_1}{\rho_1}\right)^{-0.28}$ $\times \left(\frac{E_{\rm in}}{10^{51} {\rm \, ergs}}\right)^{-0.79} \left(\frac{M_{\rm ej}}{10 {\rm \, } M_{\odot}}\right)^{0.21}$ $\times \left(\frac{R_*}{500 R_*}\right)^{2.16} \mathrm{s} \quad \left(n=\frac{3}{2}\right),$

for RSG, Tominaga+(2009)

for RSG, Matzner&McKee(1999)

What can we learn from SN breakout? SHOCK BREAKOUT

- ➡ SNLS-04D2DC
- light curve modeling tells us about the progenitor's radius

• Red giant with $R_{\star} \sim 1000 R_{\odot}$ (Schawinski+2008),

800R (Tominaga+2009)

What can we learn from SN breakout?

- SN 2008D (an example of shock breakout detected in X-ray)
 - ► spectrum is uncertain if pure BB, kT~0.7keV, R★~2×10¹⁰cm if non-thermal, $\Gamma \sim 2$ if thermal+non-thermal, kT~0.1keV \rightarrow R★~10¹¹cm
 - duration 300 sec \rightarrow R \star ~10¹³cm?

Modjaz+(2009)

What can we learn from SN brea

 SN 2008D (an example of shock breakout detected in X-ray)

spectrum is uncertain
 if pure BB, kT~0.7keV, R★~2×10¹⁰cm
 if non-thermal, Γ~2
 if thermal+non-thermal, kT~0.1keV → R★~10¹¹cm

- duration 300 sec \rightarrow R \star ~10¹³cm?
- photosphere in stellar wind?

Ofek+(2011)

★ Introduction for SN shock breakout

★ Detected events, possible events

★ What can we learn from SN shock breakout

HOur works

Theoretical works on SN shock breakout

- pioneering works: Colgate (1974), Klein&Chevalier(1976), Falk (1978), Imshennik and Nadyozhin(1988), Matzner&McKee(1999)
- steady shock structure: Weaver(1976),Katz+(2010),Budnik+(2010)
- ➡ analytical: Naker&Sari(2010,2011),Rabinak&Waxman(2012),
- → 1D RHD: Ensmann&Burrows(1992), Tominaga+(2009), Sapir+(2011,2013)
- multi-D HD: Suzuki&Shigeyama(2010),Couch+(2011), Ro&Matzner(2013), Matzner+(2013)
- wind breakout: Arcavi+(2011), Chevalier&Irwin(2011), Moriya&Tominaga(2011), Ofek+(2011), Svirsky+(2012),
- ➡ 1D SR-RHD: Tolstov+(2013)

Theoretical works on SN shock breakout

- pioneering works: Colgate (1974), Klein&Chevalier(1976), Falk (1978), Imshennik and Nadyozhin(1988), Matzner&McKee(1999)
- steady shock structure: Weaver(1976),Katz+(2010),Budnik+(2010)
- ➡ analytical: Naker&Sari(2010,2011),Rabinak&Waxman(2012),
- → 1D RHD: Ensmann&Burrows(1992), Tominaga+(2009), Sapir+(2011,2013)
- multi-D HD: Suzuki&Shigeyama(2010),Couch+(2011), Ro&Matzner(2013), Matzner+(2013)
- wind breakout: Arcavi+(2011), Chevalier&Irwin(2011), Moriya&Tominaga(2011), Ofek+(2011), Svirsky+(2012),
- ➡ 1D SR-RHD: Tolstov+(2013)

→ toward multi-D SR-RHD

Shock breakout from compact progenitor

for RSG, Matzner&McKee(1999)

Shock breakout from compact progenitor

- It is known that the shock wave propagates their atmosphere at sub-relativistic speeds
- We need special relativistic radiation-hydrodynamics simulations
- I present results of our recent study on shock breakout simulations with SR-RHD code we developed

Matzner&McKee(1999)

$$v_{f\text{max}} = 33,000 \left(\frac{\kappa}{0.34 \text{ cm}^2 \text{ g}^{-1}} \right)^{0.16} \left(\frac{\rho_1}{\rho_*} \right)^{-0.054} \\ \times \left(\frac{E_{\text{in}}}{10^{51} \text{ ergs}} \right)^{0.58} \left(\frac{M_{\text{ej}}}{10 M_{\odot}} \right)^{-0.42} \\ \times \left(\frac{R_*}{50 R_{\odot}} \right)^{-0.32} \text{ km s}^{-1} \quad (n = 3) .$$

Radiation Hydrodynamics code

Moment equations written in "mixed frame"

Radiation Hydrodynamics code

1D SR-RHD simulation

Model atmosphere

- ➡ Plane-parallel
- → Polytropic : P $\propto \rho^{4/3}$ → Analytical expression of profiles
- mass M*,radius R*,luminosity L* -> atmosphere model
- → a compact star with M = 10M, R = 1R, $L = 0.1L_{edd}$

$$\rho = \frac{a}{192} \frac{\beta^4}{1 - \beta} \left(\frac{\mu m_{\rm H}}{k_{\rm B}}\right)^4 \left(\frac{GM_*}{R_*}\right)^3 \left(1 - \frac{r}{R_*}\right)^3$$
$$P_{\rm tot} = \frac{a}{768} \frac{\beta^4}{1 - \beta} \left(\frac{\mu m_{\rm H}}{k_{\rm B}}\right)^4 \left(\frac{GM_*}{R_*}\right)^4 \left(1 - \frac{r}{R_*}\right)^4$$
$$1 - \beta = \frac{\kappa L_*}{4\pi c GM_*} = \frac{L_*}{L_{\rm edd}}$$

Shock injection

- mass M*,radius R*,luminosity L*
- → a compact star with M = 10M, R = 1R, $L = 0.1L_{edd}$
- we inject a strong shock from the inner boundar
- $v_{in}=10^9 \text{ cm/s}$

Results of 1D shock breakout

➡ initial setup

Results of 1D shock breakout

- initial setup
- strong shock propagates to the surface
- gas and radiation are strongly coupled with each other
- velocity reaches 0.1-0.2c before the breakout
- ➡ after the breakout,

2D SR-RHD simulation

- ➡ 2D RHD simulations
- ➡ 1987A progenitor: BSG with R★=50R_☉, M★=14.6M_☉ (Nomoto&Hashimoto 1988, Shigeyama&Nomoto 1990)
- → $3x10^8$ cm $\leq r \leq 4R_{\star}, 0 \leq \theta \leq \pi$
- ➡ energy injection: E_{exp}=10⁵¹[erg],t_{exp}=0.1[s]
- → asphericity: parameter a $r = R_{out} \frac{dE_{int}}{dt} \propto E_{exp}/t_{exp}[1+a\cos(2\theta)]$

θ

Shigeyama&Nomoto(1990)

- ➡ 2D RHD simulations
- ➡ Absorption: free-free
- Scattering: e⁻ scattering $\kappa = 0.2(1+X) \text{ cm}^2/\text{g}$ with X=0.565

Shigeyama&Nomoto(1990)

- ➡ 1987A progenitor: BSG
- ⇒ spherical case: a=0 dE/dt∞E_{exp}/t_{exp}[1+a cos(2 θ)] radiation energy density mass density 2.451e-06

- ➡ 1987A progenitor: BSG
- → aspherical case: a=0.5 dE/dt \propto E_{exp}/t_{exp}[1+a cos(2 θ)]

- ➡ 1987A progenitor: BSG
- → aspherical case: a=0.5 dE/dt \propto E_{exp}/t_{exp}[1+a cos(2 θ)]

- ➡ Light curve calculations
- ➡ spherical case: LC consistent with 1D RHD calculations by Shigeyama+(1988), Ensmann&Burrows(1992) for SN 1987A
- aspherical case: wide variety of light curves depending on the viewing angle

- ➡ Light curve calculations
- ➡ spherical case: L_{emit} evolution consistent with 1D RHD calculations by Shigeyama+(1988), Ensmann&Burrows(1992) for SN 1987A
- aspherical case: wide variety of light curves depending on the viewing angle

★ Introduction for SN shock breakout

★ Detected events, possible events

★ What can we learn from SN shock breakout

★ Our works

★ Summary

SN Shock breakout as a unique probe

- ➡ increasing number of detections
- → LCs are characterized by $R_{\star}/c, R_{\star}/v_{ej}$,
- ➡ information on the progenitor radius, explosion energy, asphericity
- ➡ multi-D SR-RHD simulations are ongoing

