Numerical simulations of core-collapse supernovae: Neutrino transfer by 6D Boltzmann equation

Mann "Shadow of a Star

K. Sumiyoshi

Numazu College of Technology Japan Supercomputers

KEK SR16000

Neutrino transfer in 3D supernova core Some updates in nuclear physics

- Neutrino-radiation hydrodynamics -> Nagakura
- 3D supernova explosions by hydro instabilities -> Takiwaki

Longstanding issues of core-collapse SNe

Explosion mechanism

neutrino

←High T/ρ

cooling/heating

Low T/ρ

Fe core

Shock wave

Diffusion

- Revival of shock wave, Explosion energy
- Birth place of neutron star / black hole
 - Extreme condition of matter
 - Nucleosynthesis
 - Heavy elements
 - Multi-messengers
 - Neutrino bursts
 - Grav. waves

Prof. Koshiba

Super-Kamiokande

V

neutrinos

http://www-sk.icrr.u-tokyo.ac.jp/

From nuclear physics to astrophysics

- Equation of state
- Neutrino reactions
- Nuclear data

- Hydrodynamics
- Neutrino transfer
- Stellar models
- Numerical simulations of core-collapse supernovae
 - Supercomputing technology
- Challenges:

- Nuclear physics at high ρ and T
 - Neutrino-radiation hydrodynamics in 3D

4

 $>10 \text{ km} = 10^3 \text{ m}$

Development of EOS tables

Inputs from nuclear physics

Properties of dense matter at extreme conditions

- **Necessary inputs for numerical simulations**
- 1. Pressure-Density
 - Stellar structure, Dynamics, Maximum Mass
- 2. Temperature & chemical potentials
- 3. Composition (proton, neutron, nuclei)
 - v-energy distribution, v-reaction
- **Equation of state (EOS) in supernova core**
 - Dense more than nuclei: $\rho > \rho_0 = 3 \times 10^{14} \text{g/cm}^3$
 - Neutron-rich:
 - Very Hot:

- $Y_p < Z/A = 0.46$ for ⁵⁶Fe T > 10 MeV
- Unified framework to cover wide range of ρ , Y_p , T
- Check by experimental data (ex. RIKEN Nishina C.)

Brief history of supernova EOS for simulations

1980's • Systematic studies to explore EOS effects

Analytic formulae Takahara-Sato, Baron-Cooperstein-Kahana

1990's • Data sets for supernova EOS: benchmark

Skyrme-Hartree-Fock Extended liquid drop models Relativistic Mean Field Hillebrandt-Wolff (HW) Lattimer-Swesty (LS) Shen-Toki-Oyamatsu-KS (Shen)

2001~ • Improvement of EOS tables

3D, mixture of nuclei Interactions Nuclear many body theory

G. Shen, Furusawa Hempel, Steiner Togashi-Takano, Constantinou

• Extension to exotic phases: strangeness and quarks

Mixture of Λ , Σ , Ξ -particles Quark-hadron phase transition Hempel-Schaeffner, Ishizuka Sagert, Nakazato

Shen equation of state for supernovae

H. Shen, Toki, Oyamatsu & Sumiyoshi NPA, PTP(1998), ApJS (2011)

- Relativistic mean field theory+ local-density approx.
 - Based on relativistic Brueckner Hartree-Fock (RBHF) theory
 - Checked by exp. data of n-rich unstable nuclei: TM1
 - Nuclear structure: mass, charge radius, neutron skin,...
- Covers wide range of
 - Density: $10^{5.1} \sim 10^{16} \text{ g/cm}^3$
 - Proton fraction: $0 \sim 0$
 - Temperature: 0
- $10^{5.1} \sim 10^{16} \text{ g/cm}^3$ $0 \sim 0.65$
 - $0 \sim 400 \text{ MeV}$
- Data table ~140 MB (110 x 66 x 92 points)
 - Quantities: ϵ , p, S, μ_i , X_i , m*
- Extensions with hyperons & quarks *Ishizuka et al. (2006), Nakazato et al. (2008)*

Shen-EOS

```
5.100000E+00 7.581421E-11 -2.000000E+00
5.200000E+00 9.544443E-11 -2.000000E+00
5.300000E+00 1.201574E-10 -2.000000E+00
5.400000E+00 1.512692E-10 -2.000000E+00
5.500000E+00 1.904367E-10 -2.000000E+00
5.600000E+00 2.397456E-10 -2.000000E+00
5.700000E+00 3.018218E-10 -2.000000E+00
5.800000E+00 3.799711E-10 -2.000000E+00
5.900000E+00 4.783553E-10 -2.000000E+00
6.000000E+00 6.022137E-10 -2.000000E+00
6.100000E+00 7.581421E-10 -2.000000E+00
6.200000E+00 9.544443E-10 -2.000000E+00
6.300000E+00 1.201574E-09 -2.000000E+00
6.400000E+00 1.512692E-09 -2.000000E+00
6.500000E+00 1.904367E-09 -2.000000E+00
6.600000E+00 2.397456E-09 -2.000000E+00
```

http://user.numazu-ct.ac.jp/~sumi/eos

2001~: Recent progress of supernova EOS

• Improvement of EOS tables

Finite system, mixture of nuclei Interactions, energy functions Nuclear many body theory \rightarrow Numerical simulations

G. Shen, Furusawa Hempel, Steiner Togashi-Takano, Constantinou

See also CompOSE

• Extension to exotic phases: strangeness and quarks

Mixture of Λ , Σ , Ξ -particles Quark-hadron phase transition Hempel-Schaeffner, Ishizuka Sagert, Nakazato

- Nuclear data: A_{sym}, K
- Observation of NS: 2M_{sun}, 8-16 km
- Extreme conditions for BH cases, NS mergers, GRB
- Systematic EOS to examine 2D/3D

Neutrino transfer is important

Evaluate neutrino heating

v-heating occurs in the intermediate region- Need neutrino-transferfor energy, angle distribution $f(E_v, \theta_v)$ ex. Diffusion approx. is not enough

 Even ~10 % change of v-heating may affect the outcome: explosion

Competing with other effects

v-heating rate

Janka A&A (1996)

$$Q_{v}^{i} \approx 110 \frac{MeV}{s \cdot N} \left(\frac{L_{v} E_{v}^{2}}{R_{7}^{2} < \mu > X_{i}} \right)$$

average energy, flux: E_v , L_v flux factor: $<\mu>=<\cos\theta_v>=0~~1$

Neutrino heating and hydro instabilities

- Convection, SASI, rotation, magnetic etc - Observations

\rightarrow neutrino-transfer in multi-dimensions

Marek et al, ApJ (2009) 400 hysical time: t=610 ms 200 30 s[k_R/baryon r [km] -200 -400 400 200 0 200 400 r [km] Suwa et al. (2010) PASJ 10 12 14 0 5 10 15 20 8 Entropy [kB/baryon] Log Density [g cm⁻³] 1000 500 Z [km] 0 -500 -1000 1000 500 n 500 1000 R [km] R [km]

To obtain enough ν -heating

SN1987A

Progress of neutrino-transfer

Mezzakappa-Bruenn, Liebendoerfer, Thompson-Burrows,... Yamada-Sumiyoshi, Kotake-Takiwaki, Rampp-Marek-Janka,...

- 1D: first principle calculations Boltzmann eq., Moment method
- 2D, 3D: approximate treatment
- Diffusion (with flux limiter) /IDSA ²⁰
 Suitable in central part ⁴⁰
- Ray-by-ray (radial transport)
 Dropping lateral transport S_n-method in 2D *Ott et al. ApJ*(2008)

1D-transport independently

- Need full 3D calculations: toward the grand challenge
- New code to solve 3D neutrino-transfer

Sumiyoshi & Yamada, ApJS (2012)

Solving neutrino-transfer in 3D space

Challenge: Boltzmann equation in 6D

Sumiyoshi & Yamada, ApJS 199 (2012) 17

To solve neutrino transfer in 3D

• Work in 6D: 3D space + 3D momentum

 $f_{v}(r,\theta,\phi; \varepsilon_{v},\theta_{v},\phi_{v}; t)$

– Neutrino energy (ε_v) , angle (θ_v, ϕ_v)

• Time evolution of 6D-distribution

$$\frac{1}{c}\frac{\partial f_{v}}{\partial t} + \vec{n}\cdot\vec{\nabla}f_{v} = \frac{1}{c}\left(\frac{\delta f_{v}}{\delta t}\right)_{collision}$$

- Left: Neutrino number change
- Right: Change by neutrino reactions
- Energy, angle-dependent reactions
 - Compositions in dense matter (EOS table)

Boltzmann eq. in spherical coordinate

Sumiyoshi & Yamada, ApJS (2012)

$$\frac{1}{c}\frac{\partial f_{v}}{\partial t} + \frac{\mu_{v}}{r^{2}}\frac{\partial}{\partial r}(r^{2}f_{v}) + \frac{\sqrt{1-\mu_{v}^{2}}\cos\phi_{v}}{r\sin\theta}\frac{\partial}{\partial\theta}(\sin\theta f_{v}) + \frac{\sqrt{1-\mu_{v}^{2}}\sin\phi_{v}}{r\sin\theta}\frac{\partial f_{v}}{\partial\phi} + \frac{1}{r}\frac{\partial}{\partial\mu_{v}}[(1-\mu_{v}^{2})f_{v}] + \frac{\sqrt{1-\mu_{v}^{2}}\cos\theta}{r\sin\theta}\frac{\partial}{\partial\phi_{v}}(\sin\phi_{v}f_{v}) = \frac{1}{c}\left(\frac{\delta f_{v}}{\delta t}\right)_{collision}$$

- Discrete in conservative form (S_n method)
- Implicit method in time
 - stability, time step, equilibrium
- Collision term for v-reactions
 - Different time scales: Stiff eq.

Multi-energy, angle

$$\mu_v = \cos \theta_v$$

$$\frac{1}{c} \left(\frac{\delta f_{\nu}}{\delta t} \right)_{collision} = j_{emission} (1 - f_{\nu}) - \frac{1}{\lambda_{absoption}} f_{\nu} + C_{inelastic} \left[\int f_{\nu} (E'_{\nu}, \mu'_{\nu}) dE'_{\nu} \right]$$

• absorption, emission, scattering and ...

Neutrino reactions in collision term

Basic sets for supernova simulations Bruenn (1985) + Shen

• Emission & absorption: $e^{-} + p \Leftrightarrow v_e + n$ $e^{+} + n \Leftrightarrow \overline{v}_e + p$ • Scattering: $v_i + N \Leftrightarrow v_i + N$ • Pair-process: $e^{-} + e^{+} \Leftrightarrow v_i + \overline{v}_i$ $N + N \Leftrightarrow N + N + v_i + \overline{v}_i$ v_e, \overline{v}_e, v_u

For current computing resources: only with iso-energy scattering & limited relativistic effects

Main computational load: matrix solver

- Linear equation $\vec{Af_v} = \vec{d}$
- Neutrino distribution
 - $N_{\text{space}} = n_r \times n_{\theta} \times n_{\phi}$
 - $N_v = n_\epsilon \times n_{\theta v} \times n_{\phi v}$ $N_{vector} \sim 10^6 \times 10^3$
- Memory size v-distribution: >10GB matrix: >1TB
- Iterative method

 Pre-conditioner
 Imakura et al. JSIAM (2012)

Kotake et al. PTEP (2012)

6D Boltzmann solver works indeed

Applications to 3D supernovae

Sumiyoshi, Takiwaki, Matsufuru & Yamada, arXiv:1403.34476

Neutrino transfer in 3D supernova core

Sumiyoshi et al. (2013,2014)

 V_{e} density iso-surface $\overline{\nu_{e}}$ density iso-surface

Fix the background profile, evolution by 6D Boltzmann eq.

 \rightarrow obtain stationary state of the neutrino distributions in 6D

Comparison with approximation

- Ray-by-ray
- Only radial transfer
- Anisotropy enhanced
- 6D Boltzmann
- Non-radial transfer
- Integrated values from various directions

 $\overline{\nu}_{e}$ density: color View from side: ϕ -slice

z [cm] z [cm] -5E+06 -5E+06 -1E+07 -1E+07 og(densit 1E+07 5E+06

R [cm]

Ray-by-ray: radial only

1E+07

5E+06

Sumiyoshi et al. (2013,2014)

1E+07

6D Boltzmann

log(de

5E+06

R [cm]

Ζ

1E+07

5E+06

150msec

Local fluctuations of neutrino degeneracy: hotspot

Evaluation of neutrino fluxes

• 6D Boltzmann

Integration from many directions

• Ray-by-ray (RbR)

Contribution from 1 radial direction

Toward 3D supernovae by 6D Boltzmann

- EOS tables and tools available
- Neutrino transfer in 3D supernovae
 - Neutrino heating mechanism for explosion
 Need to determine effects precisely around threshold
- New aspects by 6D Boltzmann solver
 - Non-radial transport, heating rates, angle moments
 - Comparisons with approximate methods
- Toward Exa-scale computing
 - Full 6D Boltzmann & hydrodynamics
 - Need EOS and neutrino reactions rates

Thanks for collaboration with

- Numerical simulations
 - H. Nagakura
 - W. Iwakami
 - S. Yamada
- Supernova research
 - T. Takiwaki
 - K. Kotake
 - Y. Sekiguchi

- Supercomputing
 - H. Matsufuru
 - A. Imakura
 - T. Sakurai
- EOS tables & neutrinos
 - H. Shen, K. Oyamatsu, H. Toki
 - C. Ishizuka, A. Ohnishi
 - S. Furusawa, S. Nasu
 - S. X. Nakamura, T. Sato

Supported by

- HPCI Strategic Program Field 5 Supernovae is one of the target simulations of K-computer and Exa-scale machine
- HPC resources at KEK, YITP, UT, RCNP