Collapsar scenario and NS-NS mergers

Yuichiro Sekiguchi (YITP)

A personal view on Collapsar scenario

Yuichiro Sekiguchi (YITP)

Dilemmas in Long GRB Progenitor

On the one hand, rapid rotation is necessary

- Collapsar scenario (BH + Disk)
 □ Gravitational energy of disk ⇒ neutrinos
 □ Rotational energy of BH⇒Poynting flux
- Rapid rotation is crucial also in other scenario
 - E.g. magnetar scenairo: more severe due to magneitic spindown due to strong B fields
 - At least, no evidence that magnetar remnants are more energetic (not rapidly rot. NS) (Vink 2008)
- On the other hand, association of Type-Ic HNe

- At the same time of mass loss, angular momentum is also lost if the envelopes are brown off by stellar wind
 - ▶ \Rightarrow slow rotator (e.g. Yoon et al. 2005, Woosley & Heger 2006)

• How to make SNe component in the case of BH formation at all

Sekiguchi & Shibata 2007

Dilemmas in Long GRB Progenitor

On the one hand, rapid rotation is necessary

- Collapsar scenario (BH + Disk)
 □ Gravitational energy of disk ⇒ neutrinos
 □ Rotational energy of BH⇒Poynting flux
- Rapid rotation is crucial also in other scenario
 - E.g. magnetar scenairo: more severe due to magneitic spindown due to strong B fields

On the other hand, association of Type-Ic HNe

- The progenitor star must have lost H/He envelopes
- At the same time of mass loss, angular momentum is also lost if the envelopes are brown off by stellar wind
 - ▶ \Rightarrow slow rotator (e.g. Yoon et al. 2005, Woosley & Heger 2006)

• How to make SNe component in the case of BH formation at all

Dilemmas in Long GRB Progenitor

On the one hand, rapid rotation is necessary

- Collapsar scenario (BH + Disk)
 □ Gravitational energy of disk ⇒ neutrinos
 □ Rotational energy of BH⇒Poynting flux
- Rapid rotation is crucial also in other scenario
 - E.g. magnetar scenairo: more severe due to magneitic spindown due to strong B fields

• On the other hand, association of Type-Ic HNe

- The progenitor star must have lost H/He envelopes
- At the same time of mass loss, angular momentum is also lost if the envelopes are brown off by stellar wind
 - ▶ \Rightarrow slow rotator (e.g. Yoon et al. 2005, Woosley & Heger 2006)

• How to make HNe component in the case of BH formation at all

Currently proposed models

- Peculiar progenitor models are necessary
 - LGRBs are anomalous : Progenitor cores may also be anomalous
 - He star merger model (Fryer & Heger 2005)
 - Tidal spun up star model (van den Huevel & Yoon 2007)
 - Chemically homogeneous evolution model (Woosley & Heger 2006, Yoon et al. 2006)
 - All of models predicts progenitor structure far different from ordinary 'onion-structured' SN cores
 - Strong mixing due to rapid rotation (Zahn 1983) ⇒ smaller envelope
 □ Can reduce the amount of mass/angular momentum loss
 - For Ω > Ωcrit, chemically homogenous structure is achieved
 □ No 'onion-like' structure

• <u>Higher-entropy cores are predicted !!</u>

A observational suggestion: GRB may prefer low metallicity

• First suggested by Stanek et al. (2006)

see also Modjaz et al. (2008)

A observational suggestion: GRB may prefer low metallicity

First suggested by Stanek et al. (2006)

- see also Modjaz et al. (2008)
- Recent updates (Graham & Fruchter 2013)
 - Statistical significance ↑ by # of sample ↑
 - ► Targeted type Ic SN bias ? ⇒ untargeted Ic-SN analysis
 - Nearby SDSS event bias ? ⇒
 Events in Team Keck Redshift Survey further event (z~0.8)
 - Merely due to anti-correlation
 between SFR and mettallicity ?⇒
 No ! Something intrinsic is required

A observational suggestion: GRB may prefer low metallicity

- First suggested by Stanek et al. (2006)
 - see also Modjaz et al. (2008)
- Recent updates (Graham & Fruchter 2013)
 - Statistical significance ↑ by # of sample ↑
 - ► Targeted type Ic SN bias ? ⇒ untargeted Ic-SN analysis
 - Nearby SDSS event bias ? ⇒
 Events in Team Keck Redshift Surv further event (z~0.8)
 - Merely due to anti-correlation
 between SFR and mettallicity ?⇒
 No ! Something intrinsic is required

Chemically homogeneous star candidates

- Hydrogen-rich (X(H) > 0.1)
 blue stars in LMC, SMC
- Ordinary evolution (Meynet & Maeder 2005 + 2 other groups) cannot explain these stars: Wolf-Rayet star with almost no H will be the outcome
 - Black thick curves in the figure denote X(H)>0.1
- But consistent with Chemically Homogeneous evolution models

What is Numerical Relativity ?

Solving Einstein eq. and source field eqs. to clarify dynamical phenomena in the universe where strong gravity plays a role

$$\begin{vmatrix} G_{ab} = \frac{8\pi G}{c^4} T_{ab} \end{vmatrix} \begin{vmatrix} \nabla_a T^{ab} = 0 & (T^{ab} = (T_{\text{Fluid}} + T_{\text{EM}} + T_v + \dots)^{ab}) \\ \nabla_a J^a = 0 & (J^a \sim (n_{\text{baryon}}, n_{\text{lepton}}(n_e, n_v, \dots), \dots) u^a) \end{vmatrix}$$

- All four known interactions play important roles
 - Gravity : BH/NS formation
 - Strong : EOS (Equation of State)
 - **EM** : MHD phenomena
 - Weak : Neutrino

Collapsar as High-entropy core collapse

- Full GR simulations with neutrino cooling of collapse of 100Msun very metal poor progenitor model by Umeda & Nomoto (2008)
 - Entropy per baryon ~ 4kB >> ordinary SN core ~ 0.5kB
 - Rotational profile is superimposed so that accretion torus is formed

Collapsar as High-entropy core collapse

- Full GR simulations with neutrino cooling of collapse of 100Msun very metal poor progenitor model by Umeda & Nomoto (2008)
 - Very large neutrino luminosity due to high dM/dt ~ 0.1—1Msun/sec
 - \blacktriangleright Torus and PNS are overheated (explained later) \Rightarrow convection

Collapsar as High-entropy core collapse

- Full GR simulations with neutrino cooling of collapse of 100Msun very metal poor progenitor model by Umeda & Nomoto (2008)
 - Very large neutrino luminosity due to high dM/dt ~ 0.1—1Msun/sec
 - \blacktriangleright Torus and PNS are overheated (explained later) \Rightarrow convection

Collapsar as high-entropy core collapse and long GRB

- dM/dt (larger in higher entropy) is crucial in collapsar scenario
 - v-pair annihilation efficiency (increases as Lv increases)

 $\boxed{\left(\text{eff}\right)_{\nu\bar{\nu}} \sim 0.01 \left(\frac{\dot{M}}{M_{\text{sun}} / s}\right)^{5/4} \left(\frac{M_{\text{BH}}}{10M_{\text{sun}}}\right)^{-3/2} \text{ (Zalamea \& Belborodov 2011)}} \\ \sim 0.01 \frac{L_{\nu}}{10^{53} \text{ erg/s}} \frac{\langle \varepsilon_{\nu} \rangle}{10 \text{ MeV}} \qquad \text{(Setiawan et al. 2005)}}$

- Blandford-Znajek power (McKinney 2005)
 - B-fields quickly decay due to the horizon diffusivity unless the accretion supply B

$$\left[\left(B_H^{\perp} \right)^2 \sim 3 \times 10^{31} f_{\Omega} \left(\frac{\dot{M}}{M_{\text{sun}} / s} \right) \left(\frac{M_{\text{BH}}}{10M_{\text{sun}}} \right)^{-2} \right] \qquad \dot{E}_{\text{BZ, jet}} \sim 0.1 \dot{E}_{\text{BZ, total}} \sim 10^{51} f_{\Omega} q_{\text{BH}}^2 \left(\frac{\dot{M}}{M_{\text{sun}} / s} \right) \text{erg/s}$$

- Optimistic case ($\Omega_B = \Omega_H/2$), $f_\Omega = 5$ for $q_{BH} \sim 0.75$ (very rapidly rotating case)
- Disk/Torus Topology will be changed
 - Geometrically thick torus (pair annihilation will be enhanced: Liu et al. 2010)
 - Convection may produce poloidal B-field otherwise toroidal field dominant due to rapid rotation (B-field topology crucial for BZ power; Beckwith et al. 2008)

Collapsar as high-entropy core collapse and long GRB

- dM/dt (larger in higher entropy) is crucial in collapsar scenario
 - v-pair annihilation efficiency (increases as Lv increases)

Collapsar as high-entropy core collapse and long GRB

- dM/dt (larger in higher entropy) is crucial in collapsar scenario
 - v-pair annihilation efficiency (increases as Lv increases)

- Consequences of higher entropy
 - ▶ higher dM/dt⇒ larger explosion energy ? (Yamamoto et al. 2013)
 - dM/dt, Lnu shows interesting values (compared with Sekiguchi et al. 2011, 2012)
 - ▶ Lower X_H in infall \Rightarrow more energetic SNe ? (photodissociation ~ 10⁵¹ erg/0.1Msun Fe)
 - Less Pauli blocking in neutrino pair annihilation

- Consequences of higher entropy
 - higher dM/dt⇒ larger explosion energy ? (Yamamoto et al. 2013)
 - dM/dt, Lnu shows interesting values (compared with Sekiguchi et al. 2011, 2012)
 - ▶ Lower X_H in infall \Rightarrow more energetic SNe ? (photodissociation ~ 10⁵¹ erg/0.1Msun Fe)
 - Less Pauli blocking in neutrino pair annihilation

- Consequences of higher entropy
 - higher dM/dt⇒ larger explosion energy ? (Yamamoto et al. 2013)
 - dM/dt, Lnu shows interesting values (compared with Sekiguchi et al. 2011, 2012)
 - Lower X_H in infall \Rightarrow more energetic SNe ? (photodissociation ~ 10⁵¹ erg/0.1Msun Fe)
 - Less Pauli blocking in neutrino pair annihilation

Consequences of higher entropy

- ▶ higher dM/dt⇒ larger explosion energy ? (Yamamoto et al. 2013)
 - dM/dt, Lnu shows interesting values (compared with Sekiguchi et al. 2011, 2012)
- ▶ Lower X_H in infall \Rightarrow more energetic SNe ? (photodissociation ~ 10⁵¹ erg/0.1Msun Fe)

Consequences of higher entropy

- higher $dM/dt \Rightarrow$ larger explosion energy ? (Yamamoto et al. 2013)
 - dot(M), Lnu shows interesting values (compared with Sekiguchi et al. 2011, 2012)
- Lower X_H in infall \Rightarrow more energetic SNe ? (photodissociation ~ 10⁵¹ erg/0.1Msun Fe)
- Less Pauli blocking in neutrino pair annihilation

Consequences of higher entropy

- ▶ higher dM/dt⇒ larger explosion energy ? (Yamamoto et al. 2013)
- Lower X_H in infall \Rightarrow more energetic SNe ? (photodissociation ~ 10⁵¹ erg/0.1Msun Fe)
- Less Pauli blocking in neutrino pair annihilation

Consequences of rapid rotation

- Torus-structured shock ⇒ oblique shock accumulate infall matter into central region (<u>dM/dt enhancement</u>)
- Different topology but same ingredients
 - Stalled shock
 - Neutrino 'torus'
 - ► Gain region
- How will this system evolve in presence of v-heating ?

Sekiguchi et al. 2011, 2012

Consequences of higher entropy

- ▶ higher dM/dt⇒ larger explosion energy ? (Yamamoto et al. 2013)
- Lower X_H in infall \Rightarrow more energetic SNe ? (photodissociation ~ 10⁵¹ erg/0.1Msun Fe)
- Less Pauli blocking in neutrino pair annihilation

Consequences of rapid rotation

Consequences of higher entropy

- higher dM/dt⇒ larger explosion energy ? (Yamamoto et al. 2013)
- Lower X_H in infall \Rightarrow more energetic SNe ? (photodissociation ~ 10⁵¹ erg/0.1Msun Fe)
- Less Pauli blocking in neutrino pair annihilation

Consequences of rapid rotation

R [cm]

On Compact binary mergers, Short GRBs, and r-process nucleosynthesis

Yuichiro Sekiguchi (YITP)

S.Wanajo (RIKEN), N. Nishimura (Keele Univ.) K. Kyutoku (UMW), K. Kiuchi, H.Nagakura, M. Shibata (YITP) M. Tanaka (NAOJ), K. Hotokazaka

Messengers of NS-NS mergers

Three assumptions and issues in this talk

- The central engine of SGRB is NS-NS or BH-NS mergers
 - Θjet ~< 10 degree ?

Three assumptions and issues in this talk

- The central engine of SGRB is NS-NS or BH-NS mergers
 - Ojet ~< 10 degree ?
- EM transient associated with GRB130603B is powered by radioactive decay of r-process elements in <u>dynamical</u> ejecta
 - ▶ Mej ~ 0.01 Msun ?

Three assumptions and issues in this talk

- The central engine of SGRB is NS-NS or BH-NS mergers
 - Ojet ~< 10 degree ?
- EM transient associate with GRB130603B is powered by radioactive decay of r-process elements in <u>dynamical</u> ejecta
 - Mej ~ 0.01 Msun ?
- The main origin of r-process elements is compact binary mergers
 - Universality of abundance ?

What we want to say in this talk

All these issues may be resolved if NS EOS is soft like SFHo

Jet Collimation

- Jet collimation in SGRBs has been a long-standing problem
 - No matter above the pole region in previous Newtonian simulations

Simulation by Rosswog

- Jet collimation in SGRBs has been a long-standing problem
 - (a) A01: t = 0.1 s No matter above the pole regio (b) A02: t = 0.1 s (c) A05: t = 0.1 s (d) A09: t = 0.1 s 3.0 $L=2 \cdot 10^{50}$ L=10⁵¹ $L=10^{49}$ $L=5 \cdot 10^{51}$ (erg/s) (erg/s) (erg/s) (erg/s) 2.5 2.0 r x 10⁻⁹ [cm] 1.5 1.0 0.5 0.0 0.000 0.450 0.000 0.450 0.000 0.450 0.000 0.450 r x 10-9 [cm] r x 10⁻⁹ [cm] r x 10⁻⁹ [cm] r x 10⁻⁹ [cm] max: 11.1; min: -5.65 max: 11.1; min: -9.02 max: 11.1; min: -10.17 max: 11.1; min: -10.51 Aloy et al. (2005) $Log_{10}\rho$

-2.30

-6.35

-10.4

5.80

1.75

- Jet collimation in SGRBs has been a long-standing problem
 - No mass above the pole region in previous Newtonian simulations
- Latest NR simulations of NS-NS clarified that there is quasi-isotropic mass ejection driven by shocks (e.g., Hotokezaka et al. 2013)
 - Jet collimation may be achieved

- Jet collimation in SGRBs has been a long-standing problem
 - No mass above the pole region in previous Newtonian simulations
- Latest NR simulations of NS-NS clarified that there is quasi-isotropic mass ejection driven by shocks (e.g., Hotokezaka et al. 2013)
 - Jet collimation may be achieved
- How much mass is necessary? Jet simulation by Nagakura et al. (2014)
 - ~ 0.01 Msun is necessary to explain GRB130603B (a kilonova candidate)

Jet collimation in SGRBs has been a long-standing problem

- No mass above the pole region in previous Newtonian simulations
- Latest NR simulations of NS-NS clarified that there is quasi-isotropic mass ejection driven by shocks (e.g., Hotokezaka et al. 2013)
 - Jet collimation may be achieved
- How much mass is necessary? Jet simulation by Nagakura et al. (2014)
 - ~ 0.01 Msun is necessary to explain GRB130603B (a kilonova candidate)

Jet Collimation

- ▶ We need ~0.01Msun ejecta for the jet collimation
- Interestingly, ejecta mass of this value is necessary to explain kilonova

Kilonova modelling and mass ejection

Hotokezaka et al. (2013) Tanaka et al. (2014)

Kilonova modeling : NS-NS vs. BH-NS

Requirement based on Li & Paczynski (1998) : Mej > 0.01 Msun

Hotokezaka et al. (2013) Tanaka et al. (2014)

Kilonova modeling : NS-NS vs. BH-NS

Requirement based on Li & Paczynski (1998) : Mej > 0.01 Msun

NS-NS : Soft EOS is necessary (shocks play a role)

- Small diversity in conditions before merger, Mej ~ 0.01 Msun may be universal within the typical mass range of NS-NS
- BH-NS : Stiffer EOS is preferable (tidal component is dominant)
 - large diversity is expected, because mass ejection (mostly tidal-driven) depends further on *mass and spin of BH* (need more observations !)

Hotokezaka et al. (2013) Tanaka et al. (2014)

Kilonova modeling : NS-NS vs. BH-NS

- Requirement based on Li & Paczynski (1998) : Mej > 0.01 Msun
- NS-NS : Soft EOS is necessary (shocks play a role)
 - Small diversity in conditions before merger, Mej ~ 0.01 Msun may be universal within the typical mass range of NS-NS
- BH-NS : Stiffer EOS is preferable (tidal component is dominant)
 - Iarge diversity is expected, because mass ejection (mostly tidal-driven) depends further on mass and spin of BH (need more observations !)

Kilonova modelling and mass ejection

- We need ~0.01Msun ejecta to explain EM transient associated with GRB130603B in Kilonova model
 - NS-NS : soft EOS is necessary
 - BH-NS : stiff EOS is preferable
- Interestingly, ejecta mass of this value is required to achieve the jet collimation

NS-NS merger as origin of r-process and universality

Dynamical mass ejection from BNS merger

- Two components
 + (neutrino-heated component (Perego et al. (2014); Just et al. (2014))
- Driven by tidal interactions Driven by shocks Consists of cold NS matter in B-Consists of hot shock heated matter Weak interaction can change Ye equilibrium \Rightarrow **low Ye and T** 11 10 9 8 7 6 5 -1200 -800 -400 400 800 1200 n (km) X

Dynamical mass ejection mechanism & EOS

- <u>
 Stiffer EOS</u>
 - TM1, TMA
 - R_{NS} : lager
 - Tidal-driven dominant
 - Ejecta consist of low T & Ye
 NS matter
- <u>'Intermediate EOS'</u>
 - **DD2**
- <u>'Softer EOS'</u>
 - SFHo, IUFSU
 - R_{NS} : smaller
 - Tidal-driven less dominant
 - Shock-driven dominant
 - Ye can change via weak processes

See also, Bauswein et al. (2013); Just et al. (2014)

See also, Hotokezaka et al. (2013); Bauswein et al. (2013); Just et al. (2014)

SFHo vs. Shen: Ejecta temperature

- SFHo: temperature of unbound ejacta is higher (as 1MeV) due to the shock heating, and produce copious positrons
- Shen: temperature is much lower 0.1 10 <u>SFHo (smaller R_{NS})</u> 1000km Shen (larger R_{NS}) $n + e^+ \rightarrow p + \overline{\nu}$ Lower T : less e^+ Higher T : more e⁺ Mass ejection mainly Shock heating driven by tidal effects more positron capture

SFHo vs. Shen: Ejecta Ye

- SFHo: In the shocked regions, Ye increases to be >> 0.2 by weak processes
- Shen: Ye is low as < 0.2 (only strong r-process expected)</p>

SFHo: Universality may be achieved

EOS dependences

- All of EOS models show wide Ye(m) distribution in later phase
- The peak shifts higher
 Ye for softer EOS
- Time evolution of the distribution due to weak interactions
 - e+ (and v) capture in SFHo
 - e+/v captures in DD2
 - v capture in TM1

Summary

- The central engine of SGRB is NS-NS or BH-NS mergers
 - Ojet ~< 10 degree ?</p>
- EM transient associate with GRB130603B is powered by radioactive decay of r-process elements in <u>dynamical</u> ejecta

• Mej ~ 0.01 Msun ?

- The main origin of r-process elements is compact binary mergers
 - Universality of abundance ?

A Comment on magnetar scenario

- Lack of observational evidence that magnetars are formed as rapidly rotating NS (Vink & Kuiper 2006; Vink 2008)
 - Magnetar remnants Kes 73, CTB109, N49 do not show enhancement of explosion energy

Collapsar as High-entropy core collapse (2)

- Full GR simulations with neutrino cooling of collapse of a very high entropy core : s ~ 8kB
 - Direct BH formation : long GRB with no SNe ??
 - Huge neutrino luminosity due to very high mass accretion rate > Msun/sec

Importance of High Entropy/Rotation : **Energy balance**

- Compact core / Oblique shock ⇒ <u>high mass accretion rate</u>
- Energy balance may not be satisfied
 - Rotation decreases |Qadv| & |Qv| (dense disk)
 - Additional 'cooling' sources required

$$\dot{Q}_{\rm acc}^{+} = \dot{Q}_{\rm adv}^{-} + \dot{Q}_{v}^{-}$$

$$\Rightarrow \dot{Q}_{\rm acc}^{+} = \dot{Q}_{\rm adv}^{-} + \dot{Q}_{v}^{-} + \dot{Q}_{\rm outflow/expansion}^{-} + \dot{Q}_{\rm convection}^{-}$$

- Strong dependence of Qv (v-cooling) on T (and p)
 ⇒ slight change of configuration leads to dynamically large change
 - Torus is partially supported by the (thermal) pressure gradient
- ► <u>Smaller amount of heavy nuclei ⇒ more energetic SNe ?</u>
 - Dissociation of 0.1 Msolar Fe costs ~ 10⁵¹ erg
- Higher temperature : Less Pauli blocking in neutrino pair annihilation

R-process nucleosynthesis : difficulty in SNe

- Theoretically
 - Neutrinos from PNS make the flow proton-rich via $n+v \rightarrow p+e$
 - → only weak r-process (up to 2^{nd} peak) (*Roverts et al. 2010, 2012*)
 - Electron capture SN: Hoffman et al. 2008; Wanajo et al. 2009
 - (*Iron) core collapse SN* : Fisher et al. 2010; Hudepohl et al. 2010; Wanajo et al. 2011
- **Observationally (***Tsujimoto and Shigeyama. 2014***)**
 - No enrichment of Eu in ultra dwarf galaxies but Fe increases
 - There should be no r-process events but a number of SNe (Fe个)

R-process nucleosynthesis: NS-NS

Previous NS-NS merger simulations

- Main mass ejection mechanism : tidal effects (or weak interactions are not included)
- Ejecta composed of NS matter in β-eq. at low T, very low Ye
- only 2nd (A~130; N=82) and 3rd (A~195; N=126) peaks are produced
- ♦ Universality

Our new study

- Full GR simulations with several EOS , weak interactions and approx. v-transport
- Universality may be satisfied if the NS EOS is soft (requirement from collimation, kilonova)

Recent result with finite-temperature EOS

Multi-EOS study (Thanks to <u>M. Hempel</u>)

SFHo vs. Shen: ve emissivity

On robustness of universality

- Rough expectation based on limited information currently available
 - Ye < 0.2 is responsible to the 3rd peak
 - Ye ~ 0.2-0.25 is responsible to the 2^{nd} peak
 - Ye > 0.3 is responsible to the 1st peak
- For fixed mass fraction in Ye ~ 0.1 (fixed 3rd peak)
 - Factor of ~ 5 difference in Ye > 0.3 does not change 1st peak very much
 ⇒ enhancement (from flat distribution) in Ye > 0.3 would not be serious
 - Factor of ~ 10 difference in Ye ~ 0.2 reduces 2nd peak considerably
 - \Rightarrow mass ratio between Ye ~ 0.1 and 0.2 may be important for 2nd and 3rd peaks

