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Detectability of Fast Radio Burst
(FRB) Optical Counterparts
|n Future Follow- Up Observatlons
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< For now, 8 events are
<nown (Lorimer+ 2007;
Keane+ 2012; Thornton+
2013; Spitler+ 2014;
Burke-Spolaor+ 2014).

<= 7 were detected by the
Parkes radio telescope,
1 was detected by the
Arecibo telescope.
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Caption: CSIRO's Parkes radio telescope. Credit: David McClenaghan, CSIRO
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The Origin of FRBs

<= Collapse of rotating super-massive neutron stars to black
holes (Falcke & Rezzolla 2014).

<= Merger of double neutron star binaries (NS-NS, Totani 2013).

<= Merger of double white dwarf binaries (WD-WD, Kashiyama
+ 201 3).

<= Flaring stars in the milky way (Loeb+ 2014).
< Large DM may result from corona.

= But At « V°DM law breaks down at high density (e.g.
Tuntsov 2014).

< Pulsars with unusual amplitude distribution, or annihilation
of 10" kg BHs (Burke-Spolaor+ 2011; Keane+ 2012).

< relies on uncertainties of the MW ISM model
< Perytons (Kulkarni+ 2014)
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<= Real time follow up has

never been performed yet.
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The Origin of FRBs

<= Collapse of rotating super-massive neutron stars to black
holes (Falcke & Rezzolla 2014).

<= Merger of double neutron star binaries (NS-NS, Totani 2013)."

<= Merger of double white dwarf binaries (WD-WD, Kashiyama
+2013). Optical Counterpart Expected |

<= Flaring stars in the milky way (Loeb+ 2014).
< Large DM may result from corona.

= But At « V°DM law breaks down at high density (e.g.
Tuntsov 2014).

< Pulsars with unusual amplitude distribution, or annihilation
of 10" kg BHs (Burke-Spolaor+ 2011; Keane+ 2012).

< relies on uncertainties of the MW ISM model
< Perytons (Kulkarni+ 2014)
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Kilonovae as the Counterparts
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<= Optical/NIR transients powered by decay of radioactive elements formed
via r-process in NS-NS merger ejecta (Li & Paczynski 1998).

<= A candidate was found associated with short GRB 130603B (e.g.
Tanvir+ 2013).

<= Much fainter than SNe due to opacity of the r-process elements (Barnes &
Kasen 2013; Tanaka & Hotokezaka 2013).

Red optical bands are preferable.

()
%

-
S

)

detectable up to z ~ 0.3 = ~ 2 FRB/yr by the Parks receiver.
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FOV must cover the radio beam (~ 100 arcmin )
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SN Contamination

@

<= Some physically unrelated SNe may be found in the
error circle.

<= mock catalog of SNe

<= la & core-collapse (Ibc, IIP, IIL, 1In) SNe at redshifts
0 <z <2 (up to 4 for lln) are considered.

< luminosity functions (Barbary+ 2012; Dahlen+
2012)

<= spectral templates (Hsiao+ 2007; Nugent+ 2002)
< cosmic SN rate history
- la : Okumura+ (2014)

< core-collapse: « cosmic SFR history
(Behroozi+ 2013) with normalization to low-
z SN rate of each type (Dahlen+ 2012).
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Searching Transients

° o I <= total magnitude
< transient search in a ] = e e o
residual image with some 1@3’100; - residutl wi 1 g okerval g
time interval g )
” = 60
< The interval of several g .
days is sufficient for 2 T o =
kiIOnOvae. % 21 22 23 ZT-ZES.‘—_—Z’(;{__ZI;J;B 29
observer frame i-band magnitude
< in a survey down to ijes e residual magnitude:
= a magnitude observed in a
= 275’ the numb(?r . residual image, mres = -2.5logiolfy,
density of contaminating 15t fuand] - 48.6.
. -2 : e total magnitude: non residual
SNe is 73.5 deg™ (3.3 in i

a Perkes beam).
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Color of kilonovae

4 i ! T T
<= Kilonovae are redder than _:[ owan -
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How to distinguish
a kilonova from SNe
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<= Kilonovae decay more rapidly than SNe.

< SNe with similar mes (-Af) to that of a kilonova
have much larger Am (-Af/f).

<= Not necessarily requires 2nd epoch detection.




SNe la as the Counterparts
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A WD-WD merger is one of the promising candidates of SN la progenitor.
m
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uch brighter than kilonovae
<= How can we distinguish it from contaminants?

<= For a SN la, the explosion time can be constrained to a day scale
precision with spectroscopic classification and some light curve data
points.

< Spectroscopic classification is available when i = 24,

< redshift = 0.6 for SNe la

< Number of contaminations with i < 24 is 1.3 in a Parkes beam,
but probability that a contaminant have the same explosion date
to the FRB is = 0.005 assuming SN la rate density derived by

Okumura+ (2014).

<= The FRB associated SN la can be verified with significant confidence.




Conclusions

< If FRBs originates from NS-NS mergers, a kilonovae may
accompany a FRB.

<= Recent model of kilonova suggests it can be detected at
cosmological distances with 8-m class telescope.

< Kilonovae can be distinguished from SNe with the color
evolution [e.g. A(i-z)] and/or the variability (Af/f).

<= In the case of WD-WD mergers, the expected counterparts
are SNe la (brighter than kilonovae).

<= SN la association can be verified with the spectroscopic
classification and some data points of light curves.



