SN-GRB 2014 in Riken

Probing Relativistic Supernova Explosions with Multi-Band Synchrotron Emission

D. Nakauchi (Kyoto Univ, D3)

K. Kashiyama (UC Berkeley), H. Nagakura,

Y. Suwa, and T. Nakamura (Kyoto Univ)

1. Introduction

Relativistic SN (RSN) 09bb & 12ap

One of the key events to study the GRB-SN connection.

- Lack a GRB detection but,
- Broad-lined Type Ic SNe, hypernova $E_{\rm in} \sim 10^{52} \text{ erg } M_{\rm ej} \sim 3-4 M_{\odot} \frac{\text{Lyman et al. 14}}{\text{Milisavljevic et al. 14}}$
- Luminous radio emission comparable to LLGRBs. Margutti et al. 14
- They show intermediate features between a Type Ic SN and a GRB.

Radio Calorimetry

- Ejecta CSM interaction.
- Synchrotron emission model.
- $\Rightarrow v(t) \sim R(t)/t$ R(t): ejecta radius $E \sim R^3 B^2/\epsilon_B: \text{ ejecta energy}$ $\dot{M} \sim v_{\text{wind}} \frac{B^2}{\epsilon_B} \left(\frac{R}{\beta c}\right)^2: \text{ wind density}$

*Within the uncertainty of $\epsilon_e \epsilon_B$

- Luminous radio emission comparable to LLGRBs. Soderberg et al. 10
- An energetic and mildly-relativistic ejecta may be present. $E_{\rm kin} \sim 10^{49} {\rm ~erg}$ $\Gamma \beta \sim 1$
- But their estimate is rough.

• We reconsider the radio emission of an RSN in more detail.

2. Model

The Dynamics of SN Shock Breakout

- After shock breakout, the shocked envelope is further accelerated by converting I.E. to K.E.
- Outer layers have larger velocity but less energy.

 $E_{\rm kin}(>\Gamma\beta) = \tilde{E}F(\Gamma\beta) \propto E_{\rm in}^{10.7/3} M_{\rm ej}^{-7.7/3} [(\Gamma\beta)^{-0.94} + (\Gamma\beta)^{-0.2}]^{5.5}.$

 The above structured ejecta collides with the wind medium and contributes to the radio emission.

Deceleration of the Structured Ejecta

Refreshed shock model.

Sari et al. 98 Rees&Meszaros98 Sari&Meszaros00

- A faster and less energetic layer is decelerated earlier.
- Layers are decelerated in a successive way.
- Slower layers catch up with the decelerated ones and energize the forward shock.

wind \checkmark $n_{\rm CSM}(R) \propto R^{-2}$ $\propto \dot{M}$

 $M_{\rm ej} E_{\rm in}$

The FS velocity

 $E_{\rm kin}(>\Gamma\beta) \sim E_{\rm tot}(\Gamma\beta, R) \quad \square \quad \Gamma\beta = \Gamma\beta(R)$

$$E_{\text{tot}}(\Gamma\beta, R) = R^3 (\Gamma\beta)^2 \rho_{\text{w}}(R) c^2 \left[\frac{8\pi}{9} \beta^2 + \frac{9}{4\alpha_2} (1-\beta^2) \right]$$

De Colle et al. 12

 Synchrotron emission from the shock-accelerated relativistic electrons contributes to the radio emission.

Radio Observation Fitting

Margutti et al. 2014 arXiv:1402.6344

- Radio observation fitting.
- Energy distribution. $E_{kin}(>\Gamma\beta)$ Mass loss rate. \dot{M} (The efficiency parameters are fixed.) $\epsilon_e = \epsilon_B = 0.33$ p = 3
- We reexamine the estimate of previous authors.

3. Results

Energy Distribution in the 09bb Ejecta

 The radio observation is consistent with the spherical hypernova explosion.

Energy Distribution in the 09bb Ejecta

 The radio observation is consistent with the spherical hypernova explosion.

*The failed jet model is allowed within the model uncertainty.