UHECRs, Neutrinos, and GRBs

Katsuaki Asano (ICRR, Tokyo)

Ultra High Energy Cosmic Rays(UHECRs) 1000

TA MD/SD Hybrid ICRC2013

Data

• <X_{max}>
Proton MC

Pierre AUGER

Argentina

Telescope Array (TA)

Utah, USA

UHECRs

- Production Rate $\sim 5 \times 10^{43} \text{ erg}/\text{Mpc}^3/\text{yr}$
 - Note: Core collapse SN $\sim 10^{47} \text{ erg}/\text{Mpc}^3/\text{yr}$
- Source Candidates: AGN, GRB, Galaxy Cluster etc. within 100 Mpc
- Composition: Proton? Fe?
- Anisotropy: If UHECRs are p, we can expect.
 - Excess near Cen A? TA Hot spot?
- Production Mechanism: (Relativistic) Shock? DC Acceleration? Stochastic Acceleration?
- Can we see secondary particles? (Gamma-ray, Neutrino)

GZK Mechanism

Source Candidates

To confine particles in the source, r_{gyro} < source size.

Shock at AGN hot spot

 E_{max} ZBL Γ (Ultra-relativistic shocks-GRB)

Required conditions in shock acceleration

$$t_{
m acc} < t_{
m dyn} < t_{
m cool}$$

t_{cool} Cooling Timescale, For protons, pion production may be the main cooling process. For electrons, synchrotron cooling is crucial.

t_{dyn} Dynamical Timescale, ~shock propagation timescale. In the optimistic case, it is almost equal to the escape timescale.

$$t_{acc} \sim \xi \, \frac{r_{gyro}}{c} = \xi \, \frac{\varepsilon}{ZeB} \propto \varepsilon$$

Bohm Limit: $\xi = 1$

At the maximum energy

 $t_{acc} \sim t_{dyn}$

If $t_{dyn} = \frac{L}{c}$

The Bohm Limit is equivalent to the Hillas condition.

Required source densities

Composition in TA results

arXiv: 1408.1726

Dip and Ankle Models

Heavy nuclei have been in the spotlight, while the dip model (proton model) agrees with the spectrum and Xmax.

 $p+CMB \gamma \rightarrow p+e^++e^-$

Aloisio, Berezinsky, Gazizov 2012

Anisotropy in AUGER

Anisotropy in TA

Abbasi+ 2014 **Events in 20^{\circ} -circle** Average: 5.5, (a) (b) Maximum 19 update $23(5.5\sigma)$ 72 events+update(15) E > 57 EeV 18 E > 57 EeV Dec. (deg) Dec. (deg) 16 30 30 14 Anti-GC ٠. 12 10 360 360 180 180 . R.A. (deg) R.A. (deg) .GP 6 GC SGP -30 -30 4 2 -60 (c) (d) 60 60 E > 57 EeV 5 18 Dec. (deg) Isotropic MC Dec. (deg) 4 16 30 30 3 14 12 10 180 360 180 360 R.A. (deg) R.A. (deg) Ursa Major -1 Mrk 421 -2 -30 -30 M82. M81 -3 2 M106 -60

 4σ Results

Cosmogenic Neutrinos

Neutrino can come from beyond 100Mpc. Strong UHECR source evolution →high neutrino flux

PeV neutrinos detected with IceCube

CRs and PeV neutrinos

If all high-energy CRs are extra galacitic, ...

CRs are all proton?

 $\rho(z) = \begin{cases} (1+z)^m, & 0 < z < z_1 \\ (1+z_1)^m, & z_1 < z < z_2 \\ (1+z_1)^m 10^{k(z-z_2)}, & z > z_2. \end{cases}$

TABLE I. Evolution parameters for AGN with different values of the x-ray power L_x inferred from observational data [32] are shown in the upper part of the table. The required power per unit volume W_p of cosmic rays with energies $E_p > 10^{13}$ eV was calculated under the assumption that an average AGN is described by one of these evolution models.

L_x , erg/s	1042.5	1043.5	1044.5	1045.5
m	4.0 ± 0.7	3.4 ± 0.5	5.0 ± 0.2	7.1 ± 1.0
z_1	0.7	1.2	1.7	1.7
Z2	0.7	1.2	2.7	2.7
k	-0.32	-0.32	-0.43	-0.43
W_p , $10^{40} (erg/s Mpc^3)$	7.0	6.0	1.3	0.22

Kalashev, Kusenko, Essey 2013

Neutrinos from starburst galaxies

UHECRs and GRBs

See Waxman arXiv:1010.5007 We need $5x10^{43}$ ergs/Mpc³/yr above 10^{19} eV as the local production rate of UHECRs. This is close to the local release rate of gamma-rays from GRBs!

 The integrated proton energy should be 10-30 times the gamma-ray energy.

• But, the gamma-ray energy per burst is huge: the isotropic energy is $10^{52} - 10^{55}$ erg.

Physical Condition in a Shell

In the comoving frame Energy Density: $U = \frac{L}{4\pi c R^2 \Gamma^2} \approx 3 \times 10^7 \text{ erg/cc}$ Magnetic Field: $B \approx \sqrt{0.1 \times 8\pi U} \approx 8600 \text{ G}$

Let us consider a proton of 10¹⁹eV In the comoving frame, $\gamma = \frac{10^{19} \text{eV}}{\Gamma \text{m}_{\text{p}} \text{c}^2} \approx 3.6 \times 10^7$ Acceleration Time Scale: $\approx \frac{R_L}{c} = \frac{\gamma m_p c^2}{\rho R_c} \approx 0.4 \sec \theta$ **Dynamical Time Scale:** $R/\Gamma c \approx 11 \text{ sec}$ $\frac{6\pi m_p^3 c}{\sigma_{\tau} m_s^2 B^2 v} \approx 1800 \, \text{sec}$ **Cooling Time Scale:**

Fermi Results for GRBs

Delayed Onsets in GeV

No Neutrino detection from GRBs

UHECR-GRB Scenario

"Benchmark" Case

THE ASTROPHYSICAL JOURNAL, 752:29 (10pp), 2012 June 10

doi:10.1088/0004-637X/752/1

ICECUBE NONDETECTION OF GAMMA-RAY BURSTS: CONSTRAINTS ON THE FIREBALL PROPERTIES

HAO-NING HE^{1,2,3}, RUO-YU LIU^{1,2}, XIANG-YU WANG^{1,2}, SHIGEHIRO NAGATAKI³, KOHTA MURASE⁴, AND ZI-GAO DAI^{1,2}

The benchmark case ($\Gamma = 300$, fp=10, 10ms) is OK.

PHYSICAL REVIEW D 85, 027301 (2012) See also, Note on the normalization of predicted gamma-ray burst neutrino flux

Zhuo Li

Neutrino non-detection from a very bright GRB

THE ASTROPHYSICAL JOURNAL LETTERS, 772:L4 (5pp), 2013 July 20 © 2013. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

GRB 130427A

z=0.34~10⁻³erg/cm²

ON THE NEUTRINO NON-DETECTION OF GRB 130427A

If GRB rate=Star Formation Rate

The ankle model seems still OK.

Time-dependent calculation

Asano & Meszaros 2011 & 2012

One-zone approximation in a shell

- Relativistically expanding shell (from R=R₀)
- Synchrotron
- Inverse Compton (Thomson scat Klein-Nishina regime)
- Synchrotron self-absorption
- Electron-positron pair creation
- Adiabatic cooling
- Photon escape
- Lagrangian scheme in energy space
- $p(n) + \gamma \rightarrow p(n) + \pi^{0}(\pi^{+})$
- $p(n) + p \rightarrow p(n) + p + \pi^{0}(\pi^{+})$
- p+γ→p+e⁺+e⁻
- $\pi^0 \rightarrow \gamma + \gamma, \pi^+ \rightarrow \mu^+ + \nu_{\mu}$
- $\mu^+ \rightarrow e^+ + \nu_{\mu} + \nu_e$
- Synchrotron from p, π^+ , μ^+
- Inverse Compton from p, π^+ , μ^+

See also Pe'er & Waxman 2005, Pe'er 2008, Belmont+ 2008, Vurm & Poutanen 2009, Bosnjak+ 2009, Daigne+ 2011

Time-Dependent Simulation

In this method, the photon and neutrino spectra are consistent! (Remind that the top-down UHECR model is rejected by the absence of the secondary particles)

Constraints

- Luminosity Function
- Evolution of GRB rate
- Shock Radius \Leftrightarrow Variability Timescale $(\delta t \sim R / \Gamma^2 / c)$
- Photon Spectrum ($\varepsilon_p L_p$ relation)
- Pulse Number per burst (E I) relation + δ +
 - $(\mathbf{E}_p \mathbf{L}_p \text{ relation } + \delta \mathbf{f})$

Free Parameters

- Magnetic Field (L_B/L_γ)
- Amount of Protons (L_p/L_γ)
- Bulk Lorentz Factor

Revisiting the classical model

Variability Timescale

The universality of the variability timescale = 10ms is not established.

HETE-2

Revisiting the classical model

Pulse timescale

$$R \sim c \, \delta t \Gamma^2$$

Time-dependent simulation

Numerical code: Asano & Meszaros 2012

Average spectra from a GRB

Neutron-conversion model

Bright GRBs are inconsistent with the benchmark

Optimistic model

Further 10times CR Loading

Summary

- IceCube constrained only neutrinos from a small fraction of GRBs (bright end).
- Most of such GRBs are not likely the source of UHECRs.
- Highest energy UHECRs can be originated from GRBs, but it is not straightforward to agree with the flux at 10¹⁹eV (anKle).
- The energy budget allows more protons for usual GRBs.
- Higher Γ for brighter GRBs? This further suppresses the neutrino flux.

