HPC on particle accelerations at collisionless shocks Yosuke Matsumoto Department of Physics Chiba University

> Collaborators: T. Amano & M. Hoshino (Univ. of Tokyo) T. N. Kato (Hiroshima Univ.)

Workshop "SNe & GRBs 2014", RIKEN, Aug 26, 2014

Collisionless shocks as particle accelerators

e.g., Meszaros '01

Diffusive shock acceleration

head-on collisions with magnetic turbulence

Coutesy of Irie-san@KEK

Theoretical issues

Alfven waves – preferential in parallel shocks

- magnetic clouds found in perpendicular shocks (this work)
- magnetic field amplification (x ~100)

Super-critical ($M_A > \sim 3$) shock structures

Leroy 82; Wu+ 84

Plasma kinetic instabilities in shock structures

Microinstabilities in the shock front region				Microinstabilities in the shock front region (continued)				
Instability	Excitation by	Source of free energy	Direction of propagation	Instability	Nature of wave mode	Typical wavelength	Frequency and growth rate	Remarks
Ion-ion streaming instability	Reflected ions and transmitted ions	Relative streaming between the ion species	$(\mathbf{k} \cdot \mathbf{B}_0) = 90^\circ$	Ion-ion streaming	Magnetosonic	$k \sim \frac{\omega_e}{c}$	$\gamma \sim \Omega_t$	Stabilized when the streaming velocity exceeds
Kinetic cross- field streaming instability	Reflected ions	Relative streaming between the reflected ions and the	$0 < (\mathbf{k} \cdot \mathbf{B}_0) < 90^{\circ}$ (In the copla- narity plane) $(\mathbf{k} \cdot \mathbf{B}_0) \le 90^{\circ}$ (In the copla- narity plane)		-			the Alfvén speed.
	Transmitted ions	solar wind electrons Relative streaming between the transmitted ions and the electrons		Kinetic cross- field streaming instability	Whistler mode waves with oblique propagation	$k \gtrsim \frac{\omega_{\rm LH}}{V_0}$	$\begin{split} & \boldsymbol{\omega} \simeq \boldsymbol{\omega}_{\text{LH}} \\ & \boldsymbol{\gamma} > \boldsymbol{\Omega}_i \\ & \boldsymbol{\omega} \simeq \boldsymbol{\omega}_{\text{LH}} \\ & \boldsymbol{\gamma} > \boldsymbol{\Omega}_i \end{split}$	The instability persists even if $V_0 \ge v_A$
Lower-hybrid- drift insta- bility	Reflected ions (i) (ii) Drifting electrons (i) (ii)	(i) Relative cross-field drift between the reflected ions and the electrons(ii) Density gradient	$(\mathbf{k} \cdot \mathbf{B}_0) < 90^{\circ}$ (Out of the copla- narity plane) $(\mathbf{k} \cdot \mathbf{B}_0) < 90^{\circ}$ (Out of the copla- narity plane)	Lower-hybrid- drift instability	Lower hybrid waves and drift waves	$k \sim \frac{\omega_{\text{LH}}}{V_0}$	$\omega \simeq \omega_{\rm LH}$ $\gamma \gg \Omega_i$	Instability enhanced by ∇T_e
		 (i) Relative cross-field drift between the electrons and the transmitted ions (ii) Density gradient 			Doppler-shifted whistler mode	$k > \frac{\omega_{\rm LH}}{V_0}$	$ \begin{split} & \boldsymbol{\omega} \simeq \boldsymbol{\omega}_{LH} \\ & \boldsymbol{\gamma} \geqslant \boldsymbol{\Omega}_i \end{split} $	
Ion-acoustic instability	Transmitted ions	Relative streaming between the ion species and the electrons	$(\mathbf{k} \cdot \mathbf{B}_0) < 90^{\circ}$ (Out of the coplanarity plane)	Ion-acoustic instability	Ion waves	$k\lambda_{\rm D} \lesssim 1$	$\begin{array}{l} \omega \lesssim \omega_i \\ \gamma > \Omega_i \end{array}$	Instability enhanced by ∇T_e
				Electron-	Doppler-shifted Bernstein waves and ion waves	kλ _D ≲ 1	$\omega \simeq n\Omega_e$ $\gamma > \Omega_i$	Instability suppressed by ∇B
Electron- cyclotron drift instability	Drifting electrons	Electron drift relative to the solar wind ions	$(\mathbf{k} \cdot \mathbf{B}_0) \simeq 90^{\circ}$ (Out of the copla- narity plane)	drift instability				
Whistler in- stability	Electrons	Electron thermal anisotropy $T_{e\perp} > T_{e\parallel}$	$(\mathbf{k} \cdot \mathbf{B}_0) \simeq 0^\circ$	Whistler insta- bility	Whistler-mode waves with paral- lel propagation	$k \leq \frac{\omega_e}{c}$	$\omega \ll \Omega_{\epsilon}$ $\gamma \gg \Omega_{t}$	

TABLE 1. Seven Instabilities Driven by Cross-Field Currents

Name	Туре	Approximate Frequency	Wave Number of Growth Rate Maximum Growth Rate	Type of Resonance
Ion acoustic Buneman Electron cyclotron drift	e-s e-s e-s	$\frac{k(T_e/m_i)^{1/2}}{(m_e/m_i)^{1/3}\omega_{pe}}$ $\frac{k(T_e/m_i)^{1/2}}{(m_e/m_i)^{1/2}}$	$k\lambda_{\text{Debye}} < 1 \qquad k_z \neq 0$ $k \sim \omega_{pe} / v_d \qquad k_z' \neq 0$ $k\lambda_{\text{Debye}} < 1 \qquad k_z = 0$	electron Landau nonresonant electron cyclotron
Modified two-stream Lower hybrid drift Ion cyclotron drift Ion drift ('universal')	e-s + e-m e-s + e-m e-s + e-m e-s + e-m	$ \begin{array}{l} \Omega_{LH} \\ \Omega_{LH} \\ n\Omega_{i}^{*} \\ <<\Omega_{i} \end{array} $	$ka_e < 1 \qquad k_z \neq 0$ $ka_e \sim 1 \qquad k_z = 0$ $ka_e \sim 1 \qquad k_z = 0$ $ka_t \sim 1 \qquad k_z \neq 0$	nonresonant nonresonant ion cyclotron electron Landau

The symbols used here are as defined in Lemons and Gary [1977]; e-s and e-m refer to electrostatic and electromagnetic, respectively. *Parameter $n = 1, 2, 3, \dots$ Lemons&Gary 78

Vlasov equation

$$\frac{\partial f_s}{\partial t} + \boldsymbol{v} \cdot \nabla f_s + \frac{q_s}{m_s} \left(\boldsymbol{E} + \frac{\boldsymbol{v}}{c} \times \boldsymbol{B} \right) \cdot \nabla_u f_s = 0$$

configuration (3D) + velocity space (3D) = 6D

Maxwell equation

$$\left(I - (\theta c \Delta t)^2 \nabla^2\right) \delta \mathbf{B} = \theta (c \Delta)^2 \left(\nabla^2 \mathbf{B}^t + \frac{4\pi}{c} \nabla \times J^{t + \Delta t/2}\right) - c \Delta t \nabla \times \mathbf{E}^t$$

 θ : implicitness factor

solved within ~10 interations by the conjugate gradient method

Particle-in-Cell simulation

Particle-in-Cell simulation

Characteristic scales in PIC simulations

• $\Delta h \sim Debyle length \lambda_D$:

$$\lambda_{D}[m] = 7.4 T^{\frac{1}{2}} [eV] \left(\frac{1}{n[cm^{-3}]}\right)^{\frac{1}{2}}$$

• $\Delta t \sim electron plasma frequency \omega_{pe}^{-1}$:

$$\omega_{pe}^{-1}[sec] = \frac{1}{9} \left(\frac{1}{n[cm^{-3}]} \right)^{\frac{1}{2}} 10^{-3}$$

Proton-to-Electron mass ratio M/m:

$$M/m \sim O(10) \iff 1836)$$

parsec and 10³⁻⁶ yrs in astrophysics!

Characteristic scales of SNR shocks

Shock speed
 V_{sh} = 1000 – 10000 km/s
 non-relativistic shocks

Magnetic field (upstream)
 a few μG : Alfven speed V_A ~ 10 km/s (n~0.1 /cc)
 (Alfven) Mach number M > 100 !

Dynamic ranges

 shock scale : MHD (L >> r_{gi} >> r_{ge})
 Ion to Electron mass ratio M/m=1836
 relativistic electrons : v~c (>>V_{sh} > V_Δ)

In-house PIC code

Shock creation - Injection method

Moving injector (Riquelme & Spitkovsky '11)

X

Physics in high M_A shocks

Physics in high M_A shocks

Electron shock surfing acceleration (eSSA)

eSSA in multi dimensions ?

e- acceleration at M/m=225, M_A~45 shock

Overview ($\Omega_{gi}T\sim4$)

Various kinetic instabilities

Leading edge

- strong Buneman instability
- efficient electron acceleration

Transition region

- ion-beam Weibel instability (Kato & Takabe '11)
- self-generated current sheets

- strong electrostatic field
- Ion acoustic instability (by pre-heated electron + 2 ion components)

Various kinetic instabilities

Leading edge

- strong Buneman instability
- efficient electron acceleration

Transition region

- ion-beam Weibel instability (Kato & Takabe '11)
- self-generated current sheets

- strong electrostatic field
- Ion acoustic instability (by pre-heated electron + 2 ion components)

Various kinetic instabilities

Leading edge

- strong Buneman instability
- efficient electron acceleration

Transition region

- ion-beam Weibel instability (Kato & Takabe '11)
- self-generated current sheets

- strong electrostatic field
- Ion acoustic instability (by pre-heated electron + 2 ion components)

Leading edge

- strong Buneman instability
- efficient electron acceleration

Transition region

- ion-beam Weibel instability (Kato & Takabe '11)
- self-generated current sheets

- strong electrostatic field
- Ion acoustic instability (by pre-heated electron + 2 ion components)

SNR shocks

SNR shocks

SNR shocks

SNR shocks

Physics in high M_A shocks

In-plane **B** field case

Ion-scale ripples along the shock surface
Ion cycrotron-instability
Ion-beam Weibel instability
Origin of ion-scale magnetic field turbulence

Burgess, '06

Stochastic accel. at M/m=225, M_A~42 shock

blue: Bz component, white: in-plane B field lines, red: electron orbit

Electron accelerations in perp. shocks

Electron accelerations in perp. shocks

Physics in high M_A shocks

Trillion-particle simulations on

3D PIC simulation of a quasi-perpendicular shock
M/m=64, M_A~24 (v_{sh} ~ 0.3c)
(N_x, N_y, N_z) = (8000, 768, 768)
10¹² particles (~ 100 /cell)
On 9216 nodes (73,728 cores)
50 TB for a snapshot
The largest-scale shock experiments!

Preliminary result (ongoing)

