SPH simulation of double white dwarfs merger for investigating progenitor models of SNe Ia

<u>Yushi Sato</u>(1), Naohito Nakasato(2), Ataru Tanikawa(3), Keiichi Maeda(4), Izumi Hachisu(1), Ken'ichi Nomoto(5)

2014/7/8 @ RIKEN

Today's my talk is organized as ...

```
Introduction
  Methods
  Results
Discussion
  Summary
```

Introduction

Type Ia Supernovae

- Explosion of WD in binary system
- Cosmological standard candle
- Major souces of iron group elements

SN 2014J

Image Credit: NASA, ESA, A. Goobar (Stockholm University), and the Hubble Heritage Team (STScI/AURA)

Very important for studying evolution of the Universe!

Models of progenitor

Illustration: NASA/CXC/M Weiss

0 r

Single Degenerate ? (Whelan&Iben, 1973, ApJ, 186, 1007-1014)

Illustration: NASA/CXC/M Weiss

Double Degenerate ? (Webbink, 1984, ApJ, 277, 355-360)

Observational approaches

Direct detection of companion before/after explosion
 → No certain detection (DD model)
 (e.g. Schaefer&Pagnotta, 2012 Nature, 481, 164-166)

• Detection of interaction between ejecta and companion \rightarrow No certain detection (DD model) (e.g. Kasen, 2010, ApJ, 708, 1025-1031)

Detection of signatures of CSM
→ Detected in some SNe Ia (SD model)
(e.g. Foley et al. 2012, ApJ, 752, 101)

Imply the contribution from both models

SPH simulation of WDs merger

• e.g. Yoon et al. 2007, MNRAS, 380, 933-948 $(0.9+0.6M_{sun}, 2 \times 10^5)$

Long-lived merger ··· explode **after** merger and accretion

•e.g. Pakmor et al. 2010, Nature, 463, 61-64 (0.9+0.9M_{sun}, $\sim 2 \times 10^{6}$)

Violent merger ··· explode **at** merger

 \rightarrow Imply possibility SNe Ia from WDs mergers

Long-lived merger (LLM) scenario

The conditions for SNe Ia from WDs merger

```
LLM scenario • • •
Carbon burning does not ignite on surface in quasi-stationary
phase + Total mass exceeds Chandrasekhar mass (M<sub>ch</sub>)
※Here, M<sub>Ch</sub> = 1.38M<sub>sun</sub>
```

VM scenario • • • Carbon burning dynamically occurs at merger phase

What's mass range satisfying the above conditions?

Implementing SPH simulation of CO WDs merger over wide mass range

Methods

Smoothed Particle Hydrodynamics (SPH)

Simulation setup

Code : Nakasato et al. 2012, arXiv1206.1199

Gravitational calclation : Oct tree method

EOS : Timmes & Swesty, 2000, ApJS, 126, 501

<u>Nuclear reaction</u> : Not included

Artificial viscosity : Monaghan, 1992, ARA&A, 30, 543-574

Initial condition : Dan et al. 2011, ApJ, 737, 89

<u>Mass range</u> : $0.5 \sim 1.1$ Msun(0.1 Msun)

Composition : C 50%, O 50%

<u>Particle number</u> : 10k, 50k, 100k, 500k(/Msun) (k=1,024) \rightarrow for confirming numerical convergence

Results

Example of simulation Mass \cdots 1.1+0.9 M_{sun} Particle number \cdots 500k/M_{sun} Color \cdots temperature(10⁹K)

orbital plane

meridional plane

Structure in merger phase (VM scenario)

step = 00240

>

Structure in quasi-stationary phase(LLM scenario)

Criteria for Carbon burning in each scenarios

in merger phase (for VM scenario)

Carbon burning time scale < Dynamical time scale

(Nomoto, 1982b, ApJ, 257, 780-792)

in quasi-stationary phase (for LLM scenario)
Carbon burning time scale < Neutrino cooling time scale
(Yoon et al. 2007, MNRAS, 380, 933-948)</pre>

Particle number $\rm 500k/M_{sun}$ Judgement of nuclear burning in quasi-stationary phase

Discussion

Mass range of double CO WDs for SNe Ia

Numerical convergence (maximum temperatures in quasi-stationary phase)

Summary

Summary

• Implement SPH simulation of double CO WDs merger

- Investigate the mass range for SNe Ia and estimate contribution to Galactic SNe Ia
- Mass range is - Wass range is - WM scenario $M_1 > 0.9M_{sun}$ and $M_2 > 0.8M_{sun}$ LLM scenario $M_1 < 0.9M_{sun}$ and $M_2 < 0.8M_{sun} \& M_1 + M_2 > M_{Ch}$
- Contribution from WDs mergers (DD model) is significantly small in our Galaxy
 → Other models (e.g. SD model) are more important

• Numerical convergence should be studied more carefully