Photospheric Emission in GRBs

Hirotaka Ito RIKEN

Collaborators

Shigehiro Nagataki (RIKEN), Jin Matsumoto (RIKEN), Shiu-Hang Lee (JAXA), Masaomi Ono (Kyushu Univ.), Jirong Mao (Kyushu Univ), Asaf Pe'er (UCC), Akira Mizuta (RIKEN), Alexei Tolstov (IPMU), Maria Dainotti (RIKEN), Shoichi Yamada (Waseda Univ.), Seiji Harikae (Mitubishi UFJ)

@RESCEU-RIKEN-IPMU joint meeting 2014 7/8

Gamma-Ray Burst (GRB) Most luminous explosion in the universe $L_{\gamma,iso} \sim 10^{52} - 10^{54} \, erg/s$

< Ep > ~ 490 keV

Nava + 2011

Model for Emission Mechanism

Internal Shock Model

flaw { -Low efficiency for gamma-ray production - too hard spectrum in low energy band (α)

Photospheric Emission Model

Natural consequence of fireball model

(e.g., Rees & Meszaros 2005, Pe'er et al. 2005, Thompson 2007)

Model for Emission Mechanism

Internal Shock Model

flaw { -Low efficiency for gamma-ray production - too hard spectrum in low energy band (α)

Photospheric Emission Model

Natural consequence of fireball model

(e.g., Rees & Meszaros 2005, Pe'er et al.2005, Thompson 2007)

• High emission efficiency

• Peak at ~1 MeV

×Non-thermal appearance

Dissipative process

high energy tail is reproduced by the relativistic pairs produced by dissipative processes

Magnetic recconection

Giannios & Spruit 2007, Giannios 2008

Repeated Shock

loka + 2007, Lazzati & Begelman 2010

Proton-neutron collision

Derishev 1999, Beloborodov 2009, Vurm+2011

relativistic pairs upscatter thermal photons

Geometrical brodening

Structure of the jet can give rise to the non-thermal spectra t_lab=090.0 s Lorentz factor

Multi-dimensional structure of jet may be a key to resolve the difficulty

Our focus: Effect of the jet structure on the emission Find the jet structure that can explain the observation

Our focus: Effect of the jet structure on the emission Find the jet structure that can explain the observation

Our focus: Effect of the jet structure on the emission Find the jet structure that can explain the observation

Propagation of photons are solved by Monte=Carlo method

Radial structrue fireball model (e.g., Piran 2004)

- **η:** baryon loading
 - (terminal Lorentz factor)
- L: Kinetic luminosity
- **r**i: initial radius

Propagation of photons are solved by Monte=Carlo method

velocity becomes larger

But limited only for narrow range of $|\theta_{obs} - \theta_0| < \Gamma^{-1} \sim 0.14^{\circ} \Gamma_{400}^{-1}$ observer angle

polarization

multi-component jet that reproduces Band spectra

Future missions such as Tsubame and POLAR may probe such an emission

On-going project

3D Hydrodymical simulation of relativistic jet as a background fluid

Summary

 Stratified jet can produce a power-law non-thermal tail above the peak energy

non-thermal particle is not required

 Multi-component jet can reproduce Band function irrespective to the observer angle

 $\boldsymbol{\beta}$ is reproduced by the accelerated photons

 $\boldsymbol{\alpha}$ is reproduced by the multi-color effect

Degree of polarization tends to increase as the relative velocity increases

High DOP (>10%) is predicted for the jet structure that reproduces Band function

Futrure works

Photon accelerations in various structures

shocks, turbulence

Hydrodymical simulation of relativistic jet as a background fluid