Eiji Kido Riken, ABBL

Observation of Ultra-High-Energy Cosmic Rays and photo-nuclear reactions for the interpretation

Outline

- Ultra-High-Energy Cosmic Rays (UHECRs)
- Observation of UHECRs
 - Telescope Array (TA)
 - Pierre Auger (Auger)
- Recent Results
 - Energy Spectrum
 - Composition
 - Anisotropy
- Ongoing Upgrades
 - TAx4
 - AugerPrime
- Interpretation of the Experimental Data
 - Review of the Interpretation
 - PANDORA Project
 - Impact of Photo-Nuclear Reactions on the Interpretation
 - Future Prospect
- Summary

Ultra-High-Energy Cosmic Rays (UHECRs)

Ultra-High-Energy Cosmic Rays

Hillas Diagram

- Larmor radius
 R_L =
 100 kpc (1/Z) (uG/B)(E/100 EeV)
- Magnetic fields of the sources confine cosmic ray particles up to the energies (Blue: Emax = 10²⁰ eV, Z=1) (Red: Emax = 10²⁰ eV, Z=26) → candidates of sources

Kotera & Olinto, Annu. Rev. Astron. Astrophys (2010)

Arrival Directions

Cosmic rays are charged particles Highest cosmic rays Cosmic ray Origin OV.F Cosmic rays Low energy cosmic rays → bend by the magnetic field → Isotropy at the Earth Highest energy cosmic rays → Almost go straight against magnetic field **ICRR** seminar 2015 Kawata → Possible to find cosmic-ray origin directly

UHECR Proton Interactions

UHECR Nuclei Interactions

rest frame is < 30-50 MeV.

Motivation to observe highest energy cosmic rays

- Cosmic ray sources are uncertain
- Smaller deflection angles ($\propto 1/E$)
- Sources are limited in the local universe

(~a few tens of Mpcs)

- ightarrow anisotropy in arrival directions
- \rightarrow origin of cosmic rays
- Difficulty: To obtain

high statistics ($\sim E_{th}^{-2}$ above E_{th})

Observation of UHECRs

UHECR Detectors

Surface Detector (SD) and Fluorescence Detector (FD) cover large area and detect the air shower.

 \rightarrow Large detection area (~1000 km²) is realized.

UHECR Detectors

- SD: Regardless of weather condition, high duty circle and wide FoV
 → high statistics (~FDx10) → Anisotropy & Spectral shape
- FD: limited to clear moonless night.
 Longitudinal development of air shower→Mass composition (Xmax)
 Measure the energy deposit calorimetrically → absolute energy scale

Event Reconstructions with SDs

- Timing fit→Shower Geometry
- Lateral distribution fit \rightarrow S(800) \rightarrow Energy from MC

→ rescale to calorimetrically measured E_{FD} using S(800): energy depositions which are converted in VEM unit.

The Pierre Auger Observatory

TeVPA2019 Dawson

1.5 km spacing 1600 SDs: cover ~3000 km²
4 FD sites
Operation in a stable mode from 2004

SD1500 : 1600, 1.5 km grid, 3000 km² SD750 : 61, 0.75 km grid, 25 km² <u>4 Fluorescence Sites</u>

➡24 telescopes, 1-30° FoV

Water-Cherenkov stations

Underground Muon Detectors

7 in engineering array phase 61 aside the Infill stations

<u>HEAT</u>

3 high elevation FD, 30-60°
 FoV

AERA radio antennas

➡153 graded 17 km²

+Atmospheric monitoring devices CLF, XLF, Lidars, ...

Recent Results

Energy Spectrum with TA SD

TA SD 11 years data

× J [$eV^2 \times m^{-2} \times sr^{-1} \times s^{-1}$

ш

Combined Energy Spectrum with TALE FD Mono

V. Verzi [Auger Collaboration], ICRC 2019 arXiv:1909.09073

Declination Dependence of Energy Spectrum

Difference of the cutoff energies of energy spectra

 $-\log(E/eV) = 19.64 \pm 0.04$ for lower dec. band (-16° - 24.8°)

 $-\log(E/eV) = 19.84 \pm 0.02$ for higher dec. band (24.8 $^{\circ}$ - 90 $^{\circ}$)

The global significance of the difference was estimated to be 4.3σ

Composition Analysis with TA SDFD Hybrid Xmax

- Energy Range: 10^{18.2} eV 10^{19.1} eV
- 3560 events after the quality cuts
- Systematic uncertainty of <Xmax>: \pm 17 g/cm²
- QGSjetII-04 interaction model was compared with the data
 → agreement with light composition
- More events are needed to study highest energies

Composition Analysis with TALE FD Mono Xmax

T. Abu-Zayyad, ICRC2019

- Jun. 2014 Nov. 2018 TALE FD mono data
- Energy Range: $10^{15.3} \text{ eV} 10^{18.3} \text{ eV}$
- Break point log (E/eV) = 17.23 ± 0.05

This result is expected to show the transition from galactic CRs to extragalactic CRs

Mean Xmax and its fluctuations

TeVPA2019 Dawson

Composition becoming lighter up to $\sim 2 \times 10^{18} \, \mathrm{eV}$, heavier above this energy

A. Yushkov [Auger Collaboration], ICRC 2019 arXiv:1909.09073

This result is expected to show the transition of compositions of extragalactic CRs at the highest energies.

TA hotspot in the arrival directions of cosmic rays with E > 57 EeV

Original hotspot reported in 2014, from 5 years of data

Ap. J., 790, L21(2014) E > 57 EeV (Observed 72 events) 20° over-sampling circle 19 events fall in "Hotspot" centered at (146.7°, 43.2°) (Expected = 4.5 events) local significance 5.1 σ , post trial significance 3.4 σ

E > 57 EeV, in total 168 events

38 events fall in Hotspot (α =144.3°, δ =40.3°, 25° radius, 22° from SGP), expected=14.2 events local significance = 5.1 σ , chance probability \rightarrow 2.9 σ

25° over-sampling radius shows the highest local significance (scanned 15° to 35° with 5° step)

TA hotspot in the arrival directions of cosmic rays with E > 57 EeV

K. Kawata, ICRC2019

Events within hotspot circle

The cumulative events inside the hotspot circle (25°-radius cirlce) defined by the 11-year. The increase rate of the events inside the hotspot circle:

Consistent with the linear increase within $\sim 1\sigma$

Anisotropy in the arrival directions was not discovered before in this energy region. This result would be the implication of the anisotropy.

3

-1

-2

Auger intermediate-scale anisotropy

TeVPA2019 Dawson

L. Caccianiga [Auger Collaboration], ICRC 2019 arXiv:1909.09073

Total SD events with E>32 EeV : 2157

Galactic coordinate

Gal. longitude: 19.4 deg.

Auger intermediate-scale anisotropy

γ AGNs

3FHL catalog < 250 Mpc 33 sources (CenA, Fornax A, M87...) Flux proxy **φ**(>10 GeV)

Starburst Galaxies

32 sources (Circinus, M82, M83,...) <250 Mpc Flux proxy φ(>1.4 GHz), > 0.3 Jy

Swift-BAT

>300 radio loud and quiet sources <250 Mpc \$\overline{5}\$>13.4 10⁻¹² erg cm⁻² s⁻¹\$

2MRS

~10⁴ sources with D>1 Mpc <250 Mpc Flux proxy K-band flux.

Likelihood analysis $TS = 2Log \left[L(\psi, f_{anis}) / L(f_{anis} = 0) \right]$

		•				
Catalog	$E_{ m th}$	TS	Local p-value	post-trial	f_{aniso}	θ
Starburst	38 EeV	29.5	4×10^{-7}	4.5 σ	$11^{+5}_{-4}\%$	15^{+5}_{-4} °
γ -AGN	39 EeV	17.8	1×10^{-4}	3.1 σ	$6^{+4}_{-3}\%$	14^{+6}_{-4}
Swift-BAT	38 EeV	22.2	$2 imes 10^{-5}$	3.6 σ	$8^{+4}_{-3}\%$	$15^{+6\circ}_{-4}$
2MRS	40 EeV	22.0	$2 imes 10^{-5}$	3.6 σ	$19^{+10}_{-7}\%$	$15^{+7\circ}_{-4}$

(given source smearing, clearly some overlap between catalogs)

TeVPA2019 Dawson

Auger large-scale anisotropy

A Aab et al. [Auger Collaboration], Science 357 1266 (2017); E. Roulet [Auger Collaboration], ICRC 2019 arXiv:1909.09073 Dipole E > 8 EeV was discovered at > 5.2σ significance level in 2017 Energy dependence was also discovered at 5.1σ significance in 2019

Large-scale anisotropy

Energy [EeV]		N	d_{\perp}	d_z	d	α_d [°]	δ_d [°]
interval	median						
4 - 8	5.0	88,317	$0.010\substack{+0.007\\-0.004}$	-0.016 ± 0.009	$0.019\substack{+0.009\\-0.006}$	70 ± 34	-57^{+24}_{-20}
≥ 8	11.5	36,924	$0.060\substack{+0.010\\-0.009}$	-0.028 ± 0.014	$0.066\substack{+0.012\\-0.008}$	98 ± 9	-25 ± 11

A. Aab et al. [Auger Collaboration], Science 357 1266 (2017); E. Roulet [Auger Collaboration], ICRC 2019 arXiv:1909.09073

18/30

Anisotropy is expected to be come from nearby extragalactic sources by comparing with the distribution of nearby galaxies.

30

Summary

- Energy Spectrum
 - TA: Declination dependence was claimed at 4.3σ in the energy spectrum
 - Auger: New flattening feature was found in the spectral shape at the highest energies
- Composition
 - TA SD and FD hybrid: consistent with light composition with log (E/eV) > 18.2 and log (E/eV) < 19.1
 - Auger: composition becoming lighter up to 2 10¹⁸ eV and heavier than this energy
- Intermediate-scale anisotropy
 - TA: **2.9** σ hotspot, oversampling radius: 25° E > 57 EeV
 - Auger: 4.5σ correlation with starburst galaxies, oversampling radius: 15° E>38 EeV
- Large-scale anisotropy
 - Auger: dipole was detected in **>5.2σ**, E>8 EeV in 2017
- Implications of anisotropy are showing up from both TA and Auger at the highest energies.

Ongoing Upgrades

The TAx4 experiment

ICRC2019 Kido

To study more about the highest energies and examine the implications obtained by TA

500_new_SDs with 2.08 km spacing

E > 57 EeV:

- Reconstruction efficiency > 95%
- Angular resolution: 2.2°
- Energy resolution: \sim 25%

and TA SDs cover <u>4 × TA SD detection area (~3000 km²)</u>

2 new Fluorescence Detector (FD) stations (4+8 HiRes Telescopes)

Deployed SDs and Communication Towers

- More than half of SDs (257 SDs) were deployed on 19 Feb. – 12 Mar. 2019.
- Locations of SDs were decided to optimize hybrid events above 10 EeV and consider practical conditions of wireless communications

 \rightarrow ~3 × TA SDFD equivalent hybrid events will be collected

Construction of TAx4 SDs

Deployment of Assembled SDs

Design of SDs

- 2 layers 3 m² 1.2 cm thick plastic scintillators
- \rightarrow Calibration of signals using single muons
- DAQ with 2.4 GHz wireless communication

Stainless steel box for the electronics and a battery

ICRC2019

Kido

Scintillator box

PMT and arrangement of WLF fibers (**33%** of TA SDs) was changed from TA SD for the cost reduction

Single peak: 21 p.e. in average (~ TA SDs) Non-uniformity: < 15 % (~1/2 x TA SDs) Pulse linearity: 50 mA (~2 x TA SDs)

Cosmic Ray Event (E > 57 EeV)

We started stable observation SD: from 2019 Nov., FD(north): from 2018 Jun. FD(south): from 2020 Sep.

Expectation of Hotspot in next 5 years

Auger upgrade (AugerPrime)

SD statistics $\sim 10 \times FD$ statistics Plastic scintillator is added to the water tank SD: measure electromagnetic component, muon component \rightarrow R&D of the method to determine the mass composition of cosmic rays using only SD \rightarrow Mass composition at the highest energies with large statistics (operation: 2018-)

TeVPA2019 Dawson

AugerPrime - deployment underway

Mass-composition information for all events, including the very highest energies.

- Engineering array (12 stations) since 2016, scintillator (SSD), new electronics (faster sampling, increased dynamic range)
- Pre-production SSD array (80 stations) since March 2019.
- 559 SSD stations installed up to now (Nov 2019)
- Underground muon detector (UMD) construction continues
- New: 3000 km² radio detector

November 17, 2019

Water-Cherenkov detector (WCD) with new surface scintillator detector (SSD) and new radio antenna.

Interpretation of the Experimental Data

Heinz 2019 CRPropa meeting

Sources – Generic model

 \rightarrow Fit observed energy spectrum and Xmax

DESY.

٠

٠

Heinz 2019 CRPropa meeting

Results: Best fit spectrum

For combination Talys – Sibyll 2.3

- Fit mainly sensitive to envelope of cutoffs
- Fit-range insensitive above z = 1!
- Composition below ankle proton dominated (by construction) ...
- ... additional heavy component needed (galactic)

DESY.

Heinz 2019 CRPropa meeting

Sako JPS meeting 2020

Forward-folding analysis : Propagation, model dependence

 >50% effect of *α* production rate, which is poorly constrained by the laboratory experiments, or poorly modeled for existing data (plot above)

PANDORA Project

Photo-Absorption of Nuclei and Decay Observation for Reactions in Astrophysics

ELI-NP (Romania)

Joint project among three experimental facilities with nuclear theories and astrophysical simulations

RCNP-Grand Raiden (Osaka, Japan)

XSCRC2019 Tamii

iThemba LABS South Africa

CAKE

decay charge particle detector array

complementary experimental techniques

Schedule of the Measurements

Virtual Photon Exp.

RCNP 2022-

Total strength distribution up 32 MeV γ -decay

multipole decomp. analysis (ang. dep. and polarization transfer)

iThemba LABS 2021-

Beam time approved for the first cases: ¹²C, ²⁷Al

Total strength distribution up 24 MeV

 p,α,γ -decays

multipole decomp. analysis (ang. dep.)

Real Photon Exp.

LoI submitted

ELI-NP 2023-

absolute c.s.

Good systematic data Consistency among three facilities Reference target: ²⁷Al.

JPS2020 Tamii

 σ_{abs} and p, α, γ decays

model independent separation of E1 and M1 n,p,α,γ -decays up to 20 MeV

Target Nuclei

Measurements on 10-20 nuclei in 5-10 years with theoretical model developments

JPS2020 Tamii

Candidate target nuclides

- ¹²C, ¹⁶O, and ²⁷Al
- 6Li, 7Li, 9Be

first cases, alpha decay, reference target

Cross section accuracy:

light nuclei

- (²⁰Ne), ²⁴Mg, ²⁸Si, ³²S, (³⁶Ar), ⁴⁰Ca N=Z nuclei, α-cluster effect, deformation
- ²⁶Mg, ⁴⁸Ca, ⁵⁶Fe N>Z nuclei
- ¹³C, ¹⁴N, ⁵¹V

odd and odd-odd nuclei

5-10%

• (γ,xn) on ¹⁸O, ⁴⁸Ca, ⁶⁴Ni

Sensitivity test and selection of important nuclei are under discussions.

PANDORA Project: Organization

Nuclear Experiments

1		Osaka Uniz	JPS2020 Tamil			
	RCNP	A. Tamii, N. Kobayashi, T. Sudo, Z. Yang, T. Furuno, M. Murata, A. Inoue, H. Mori				
	ELI-NP	PA. Söderström, D. Balabanski, L. Capponi, A. Dhal, T. Petruse, D.	Nichita, Y. Xu			
	iThemba LABS	iThemba LABS, Univ. Witwatersland, Stellenbosh Univ. L. Pellegri, R. Neveling, F.D. Smit, J.A.C. Bekker, S. Binda, H, Jivan, T. Khumal, M. Wiedeking, K.C.W. Ki, P. Adsley, L.M. Donaldson, E. Sideras-Haddado, K.L. Malat S. Jongile, A. Netshiya				
	TU-Darmstadt	P. von Neumann-Cosel, N. Pietralla, J. Isaak, J. Kleemann, M. Spall				
	U. Milano/INFN	lilano/INFN A. Bracco, F. Camera, F. Crespi, O. Wieland				
Nuclear Theory						
	AMD	M. Kimura, Y. Taniguchi, H. Motoki Antisymmetrized Molecu	ular Dynamics			
	NRFT	E. Litvinova, P. Ring, H. Wibowo Nuclear Relativistic Field	d Theory			
	RPA/DFT	T. Inakura				
	TALYS	S. Goriely, E. Khan				
UI	HECR Theory					
	Propagation	D. Allard, B. Baret, I. Deloncle, J. Kiener, E. Parizot, V. Tatischeff				
	and production	S. Nagataki, E. Kido, J. Oliver, H. Haoning				
			= 0			

NC Neutrino Detection Y. Koshio, M. Sakuda, M.S. Reen,

IDCOOO T

••

PANDORA Project: Organization

Nuclear Experiments

ſ	-	Osaka Uniz		JPS2020 Tamii	
	RCNP	A. Tamii, N. Kobayashi, T. Sudo, Z. Yang, T. Furuno, M. Murata, A. Inoue, H. Mori			
	ELI-NP	 ELI-NP PA. Söderström, D. Balabanski, L. Capponi, A. Dhal, T. Petruse, D. Nichita, Y iThemba LABS, Univ. Witwatersland, Stellenbosh Univ. L. Pellegri, R. Neveling, F.D. Smit, J.A.C. Bekker, S. Binda, H, Jivan, T. Khuma Wiedeking, K.C.W. Ki, P. Adsley, L.M. Donaldson, E. Sideras-Haddado, K.L. N 			
[iThemba <mark>LABS</mark>				
S. Jongile, A. Netshiya TU Darmstadt — Buon Noumann Cosol, N. Biotralla, Lissak, I				M. Spall	
	I Milano/INFN	P. von Neumann-Cosel, N. Pietralia, J. Isaak, J. Kleemann, M. Spall			
Nuclear Theory					
Nuclear Theory					
	AMD	M. Kimura, Y. Taniguo	hi, H. Motoki Antisymmetrize	d Molecular Dynamics	
	NRFT	E. Litvinova, P. Ring, H	stic Field Theory		
	RPA/DFT	T. Inakura	Theoretical models are needed experimental data in the sime	ed to include the lations of the	
	TALYS	S. Goriely, E. Khan	propagation of UHECRs \rightarrow Kic compare models with collabo	lo started to rators	
UHECR Theory					
	Propagation	D. Allard, B. Baret, I. Deloncle, J. Kiener, E. Parizot, V. Tatischeff			
	and production	S. Nagataki, E. Kido, J. Oliver, H. Haoning			

NC Neutrino Detection Y. Koshio, M. Sakuda, M.S. Reen,

Comparison of Photoabsorption Cross Sections

- T. Inakura et al., PHYSICAL REVIEW C 80, 044301 (2009) and T. Inakura et al., PHYSICAL REVIEW C 84, 021302(R) (2011).
 - Density Functional Theory (DFT) calculation
 - σ_{GDR} (GDR: Giant Dipole Resonance)
 - 12 nuclei (4He 12C 16O 20Ne 24Mg 28Si 32S 36Ar 40Ca 48Ti 52Cr 56Fe)
 - 3 interaction models
 - SkM* : J. Bartel et al., Nucl. Phys. A 386, 79 (1982).
 - SLy4 : E. Chanbanat, P. Bonche, P. Haensel, J. Mayer, and R. Schaeffer, Nucl. Phys. A627, 710 (1997).
 - UNEDF1 : M. Kortelainen et al., Phys. Rev. C 85, 024304 (2012).
- TALYS-1.95 https://tendl.web.psi.ch/tendl_2019/talys.html
 - Statistical Hauser-Feshbach theory
 - $\sigma_{GDR} + \sigma_{QD}$ (QD: Quasi Deuteron)
 - Default : 11 nuclei
 - (12C 16O 20Ne 24Mg 28Si 32S 36Ar 40Ca 48Ti 52Cr 56Fe)
 - Restored (E1-strength function was changed for CRPropa and SimProp))
 - : 5 nuclei (12C 16O 24Mg 28Si 40Ca)
- Data
 - IAEA Photonuclear Data Library 2019 T. Kawano *et al.*
 - Table III Recommended Experimental GDR parameters in the certain energy range
 - Standard Lorentzian (SLO): $\sigma_{\rm GDR}(E_{\gamma}) = \sigma_R \frac{E_{\gamma}^2 \Gamma_R^2}{(E_R^2 E_{\gamma}^2)^2 + E_{\gamma}^2 \Gamma_R^2}$

²⁸Si Photoabsorption Cross Sections

Comparison of Peak Energies and Cross Sections

Comparison of Peak Energies and Cross Sections

²⁸Si Energy Loss Length of Photodisintegration (CMB + IRB(Gilmore+, 2012))

Simulations of Propagation of UHECRs

 $dN/dE \propto E_{\rm inj}^{-\gamma} \exp(-E_{\rm inj}/ZR_{\rm cut})$

0 < z < 1

- $\gamma = 1$, $R_{\rm cut} = 5 \times 10^{18} \, {\rm V}$
- Sources are uniformly distributed in comoving volume.
- CRPropa3
- IRB: Gilmore+ 2012
- 1 dimensional propagation
- We replaced the default mean free path tables (TALYS (restored)) with other models (TALYS (default), SkM*, SLy4, UNEDF1).
- We did not change the tables of the branching ratios.

Energy Spectrum from 28Si source

Normalization: total number of events

Comparison of the simulated spectrum with TALYS-1.95 (default) model

58

Energy Spectrum from 160 source

Normalization: total number of events

Summary

- Uncertainty of Xmax is the dominant factor for the interpretation of the experimental data.
- Model dependence of the photo-nuclear interaction models were searched, and especially the uncertainty of the alpha particle production ratio was pointed out by Batista+ 2016.
- PANDORA project will start their measurements in the near future.
- Model dependence of nuclear theories are being studied for the implementation of the measurements in the simulation of propagation of UHECRs.
- Ongoing update from nuclear theorists
 - Cross sections using DFT calculation will by updated by T. Inakura.
 - Cross sections and alpha particle production ratio will be provided using AMD calculation by M. Kimura.

Summary 2

- Intermediate-scale anisotropy
 - TA: 2.9σ hotspot, oversampling radius: 25° E > 57 EeV
 - Auger: 4.5σ correlation with starburst galaxies, oversampling radius: 15° E>38 EeV
- Large-scale anisotropy
 - Auger: dipole was detected in **>5.2σ**, E>8 EeV in 2017
- Composition
 - TA SD and FD hybrid: consistent with light composition with log (E/eV) > 18.2 and log (E/eV) < 19.1
 - Auger: composition becoming lighter up to 2 10¹⁸ eV and heavier than this energy
- Energy Spectrum
 - TA: Declination dependence was claimed at 4.3σ in the energy spectrum
 - Auger: New flattening feature was found in the spectral shape at the highest energies
- TAx4 detectors partially started to run.
 - More than half of TAx4 SDs were deployed, and 2 TAx4 FD stations were constructed.
 - Data acquisition was started. SD: from Apr. 2019, FD: from Jun. 2018. Cosmic ray events are being collected.
 - Prospects
 - $\sim 4 \times TA SD$ equivalent cosmic ray events with E > 57 EeV will be collected when the full operation is started.
 - ~3 × TA SDFD equivalent hybrid events will be collected especially for Xmax at the highest energies when the full operation is started.
- AugerPrime detectors also partially started to run. → more composition sensitivity from SDs
- UHECR source are still uncertain.
- More information of UHECR sources will be obtained with upgraded experiments!