

The impact of the cross sections on the outcome of the propagation studies

E. Kido¹, M. Kimura², T. Inakura³, S. Nagataki¹ and A. Tamii⁴ Riken¹, Hokkaido Univ.², LANE, Tokyo Tech.³, RCNP, Osaka Univ.⁴

Outline

- Comparison of Photoabsorption Cross Sections
- Simulations of Propagation of UHECRs
- Summary

Comparison of Photoabsorption Cross Sections

- T. Inakura *et al., PHYSICAL REVIEW C* 80, 044301 (2009) and T. Inakura *et al., PHYSICAL REVIEW C* 84, 021302(R) (2011).
 - σ_{GDR} (GDR: Giant Dipole Resonance)
 - 12 nuclei (4He 12C 16O 20Ne 24Mg 28Si 32S 36Ar 40Ca 48Ti 52Cr 56Fe)
 - Different interaction models
 - SkM* : J. Bartel *et al., Nucl. Phys.* A 386, 79 (1982).
 - SLy4 : E. Chanbanat, P. Bonche, P. Haensel, J. Mayer, and R. Schaeffer, Nucl. Phys. A627, 710 (1997).
 - UNEDF1 : M. Kortelainen *et al., Phys. Rev. C* **85**, 024304 (2012).
 - Photoabsorption cross sections below the proton or neutron separation energies were removed or replaced by the discrete cross sections of another model.
 - Energy scales of the cross sections of 4He were corrected.
- TALYS-1.95 <u>https://tendl.web.psi.ch/tendl_2019/talys.html</u>
 - $\sigma_{GDR} + \sigma_{QD}$ (QD: Quasi Deuteron)
 - Default : 11 nuclei

(12C 16O 20Ne 24Mg 28Si 32S 36Ar 40Ca 48Ti 52Cr 56Fe)

- Restored (E1-strength function was changed for CRPropa and SimProp))
 - : 5 nuclei (12C 16O 24Mg 28Si 40Ca)

Data for Comparison

- IAEA Photonuclear Data Library 2019
- T. Kawano et al., Nuclear Data Sheets 163, 109–162 (2020).
- Table III Recommended Experimental GDR parameters
- Standard Lorentzian (SLO):

$$\sigma_{\rm GDR}(E_{\gamma}) = \sigma_R \frac{E_{\gamma}^2 \Gamma_R^2}{(E_R^2 - E_{\gamma}^2)^2 + E_{\gamma}^2 \Gamma_R^2}$$

 σ_{R} : peak cross section E_R: resonance energy Γ_{R} : resonance width

²⁸Si Photoabsorption Cross Sections

GDR Peak Energies in MeV

	IAEA (SLO)	SkM*	SLy4	UNEDF1	TALYS default	TALYS restored
4He	NONE	22.2	23.0	26.2	NONE	NONE
12C	22.9	19.4	20.0	24.0	22.6	22.4
160	23.7	19.0	19.4	21.0	24.5	22.0
20Ne	NONE	16.0, 21.0	16.0, 21.0	16.0, 21.0	15.2, 23.8	
24Mg	19.7, 23.5	16.0, 21.6	16.0, 21.0	17.6, 21.6	14.4, 22.8	20.0
28Si	20.1	18.0	17.8	19.0	20.1	20.0
325	19.5	19.0	19.0	19.4	21.3	
36Ar	NONE	18.0	17.4	18.6	20.8	
40Ca	20.6	18.0	18.0	18.4	20.2	19.5
48Ti	19.8	19.0	19.0	19.4	19.4	
52Cr	19.2	19.0	19.0	19.0	19.0	
56Fe	NONE	19.0	18.8	19.4	18.7	6

GDR Peak Energies

7

GDR Peak Cross Sections in mb

	IAEA (SLO)	SkM*	SLy4	UNEDF1	TALYS default	TALYS restored
4He	NONE	6.5	6.9	4.5	NONE	NONE
12C	21.30	23.3	23.5	12.8	8.9	23.8
160	27.96	40.2	42.1	23.7	7.3	32.2
20Ne	NONE	24.1, 31.3	23.4, 30.2	23.4, 30.2	27.9, 27.1	
24Mg	33.05, 27.60	34.4, 35.7	30.9, 37.3	21.9, 26.7	23.9, 28.7	44.5
28Si	54.52	62.9	60.8	42.4	12.4	61.0
325	35.43	97.7	93.0	64.1	42.6	
36Ar	NONE	80.0	83.8	59.7	50.2	
40Ca	104.78	124.4	128.9	86.8	58.2	99.5
48Ti	63.74	117.4	114.8	86.3	74.8	
52Cr	81.34	141.7	136.5	108.3	83.9	
56Fe	NONE	140.3	137.0	107.2	93.3	

Calculation of the mean free path of photodisintegration

Mean free path λ (Stecker 1969)

$$\lambda^{-1}(\Gamma, z) = \frac{1}{2\Gamma^2} \int_0^\infty \int_0^{2\Gamma\epsilon} n(\epsilon, z) \frac{1}{\epsilon^2} \epsilon' \sigma(\epsilon') \, d\epsilon' d\epsilon,$$

- n: spectral number density of background photons (CMB, IRB(Gilmore+, 2012))
- Γ : Lorentz factor of the nucleus
- ε : photon energy
- $\epsilon' = \Gamma \epsilon (1 \cos \Theta)$: photon energy in the nucleus's rest frame
- Θ : opening angle between the photon and the nucleus momenta
- σ : non-elastic cross section (replaced with σ_{GDR} for SkM*, SLy4 & UNEDF1 models)

$$\sigma_{non-el} = \sum_{Z} \sum_{N} \sigma_{prod}(Z, N).$$

$$\sigma_{prod}(Z, N) = \sum_{i_n=0}^{\infty} \sum_{i_p=0}^{\infty} \sum_{i_d=0}^{\infty} \sum_{i_t=0}^{\infty} \sum_{i_h=0}^{\infty} \sum_{i_\alpha=0}^{\infty} \sigma^{ex}(i_n, i_p, i_d, i_t, i_h, i_\alpha) \delta_N \delta_Z,$$

²⁸Si mean free path of photodisintegration with the CMB photons

²⁸Si mean free path of photodisintegration with the IRB(Gilmore+, 2012) photons

Simulations of Propagation of UHECRs

 $dN/dE \propto E_{\rm inj}^{-\gamma} \exp(-E_{\rm inj}/ZR_{\rm cut})$

0 < z < 1

- $\gamma = 1$, $R_{\rm cut} = 5 \times 10^{18} \, {\rm V}$
- Sources are uniformly distributed in comoving volume.
- CRPropa3
- IRB: Gilmore+ 2012
- 1 dimensional propagation
- We replaced the default mean free path tables (TALYS (restored)) with other models (TALYS (default), SkM*, SLy4, UNEDF1).
- We did not change the tables of the branching ratios.

²⁸Si Energy Loss Length of Photodisintegration (CMB + IRB(Gilmore+, 2012))

Energy Spectrum from 28Si source

log(E³ J(E)[arbitrary unit])

¹⁶O Energy Loss Length of Photodisintegration (CMB + IRB(Gilmore+, 2012))

Energy Spectrum from 160 source

log(E³ J(E)[arbitrary unit])

Summary

- We compared 5 models (T. Inakura *et al.* and TALYS) of photoabsorption cross sections of 12 nuclei (4He 12C 16O 20Ne 24Mg 28Si 32S 36Ar 40Ca 48Ti 52Cr 56Fe).
 - Max. difference of the GDR peak energies: about 29% (160)
 - Max. difference of the GDR cross sections: about 580% (160)
- We simulated the propagation of UHECRs using these photoabsorption cross sections and CRPropa3.
 - Assumption of the UHECR sources: $dN/dE \propto E_{\rm inj}^{-\gamma} \exp(-E_{\rm inj}/ZR_{\rm cut})$

 $R_{\rm cut} = 5 \times 10^{18}$ V, 0<z<1 uniform distribution

Cutoff energies are shifted mainly depending on the GDR peak energies.