## The r-process and electromagnetic emission from neutron star mergers

Shinya Wanajo (RIKEN iTHES)

with

Y. Sekiguchi (YITP), N. Nishimura (Keele Univ.), K. Kiuchi (YITP), K. Kyutoku (RIKEN), M. Shibata (YITP) M. Tanaka (NAOJ), K. Hotokezaka (Hebrew Univ.)

> GRB Workshop 2015 2015年8月31-9月2日, RIKEN





### origin of gold (r-process elements) is still unknown...



www.cartier.jp

### **NS mergers: sRGB and r-process**



- coalescence of binary NSs expected ~ 10 – 100 per Myr in the Galaxy (possible sources of short GRB as well as r-process)
- ❖ first ~ 0.1 seconds dynamical ejection of n-rich matter up to M<sub>ej</sub> ~ 10<sup>-2</sup> M<sub>☉</sub>
- ✤ next ~ 1 second neutrino or viscously driven wind from the BH accretion torus up to  $M_{\rm ej} \sim 10^{-2} M_{\odot}$ ?

**GRB** workshop

### **NS mergers: sGRB and r-process**

## LETTER

doi:10.1038/nature12505

### A 'kilonova' associated with the short-duration γ-ray burst GRB130603B

N. R. Tanvir<sup>1</sup>, A. J. Levan<sup>2</sup>, A. S. Fruchter<sup>3</sup>, J. Hjorth<sup>4</sup>, R. A. Hounsell<sup>3</sup>, K

Short-duration  $\gamma$ -ray bursts are intense flashes of cosmic  $\gamma$ -rays, lasting less than about two seconds, whose origin is unclear<sup>1,2</sup>. The favoured hypothesis is that they are produced by a relativistic jet created by the merger of two compact stellar objects (specifically two neutron stars or a neutron star and a black hole). This is supported by indirect evidence such as the properties of their host galaxies<sup>3</sup>, but unambiguous confirmation of the model is still lacking. Mergers of this kind are also expected to create significant quantities of neutron-rich radioactive species<sup>4,5</sup>, whose decay should result in a faint transient, known as a 'kilonova', in the days following the burst<sup>6-8</sup>. Indeed, it is speculated that this mechanism may be the predominant source of stable r-process elements in the Universe<sup>5,9</sup>.



#### Tanvir+2013, Nature, Aug. 29

### r-process novae (kilonovae)



## **EM counterparts of GW signals**



GW signal can be spatially resolved only ~ 100 deg<sup>2</sup> by KAGRA/a.LIGO/ a.Virgo (from 2017) → EM counterparts are needed

SGRBs events should be restricted due to narrow beaming

r-process novae detectable (by, e.g., Subaru/HSC) from all directions!

## lanthanide curtain for r-process novae



Tanaka & Hotokezaka 2013;

 large opacities of lanthanides (A > 130);
 ~ 100 times greater than those of iron group elements

brightness of r-process novae should be highly dependent on the nucleosynthetic abundances

## what is a smoking gun of the r-process?



of an r-process

### r-process nova in the SGRB afterglow?

Hotokezaka+Tanaka...+Wanajo 2013; NS+NS models



Iate-time excess NIR flux requires an additional component (most likely an r-process nova)

the excess NIR indicates the NS-NS ejecta with M<sub>ej</sub> ~ 0.02 M<sub>☉</sub>

## late-time wind and viewing angle



- effects of wind components as well as viewing angles (e.g., Martin+2015 with Newtonian simulations)
- wind component (~0-60 deg) is lanthanide free (A < 130)</p>
- r-process novae can be bright in UV and VR in the first few days; detailed nucleosynthetic information (abundances as function of viewing angle) should be important

### where do we have neutrons?



core-collapse supernovae (since Burbidge+1957; Cameron 1957)

n-rich ejecta nearby proto-NS

### not promising according to recent studies GRB workshop

neutron-star mergers (since Lattimer+1974; Symbalisty+1982)

- n-rich ejecta from coalescing NS-NS or BH-NS
- few nucleosynthesis studies

## SN neutrino wind: not so neutron-rich

- $\mathbf{*} Y_{e}$  is determined by
  - $v_e + n \rightarrow p + e^ \overline{v}_e + p \rightarrow n + e^+$
- ✤ equilibrium value is

$$Y_{\rm e} \sim \left[ 1 + \frac{L_{\overline{\nu}{\rm e}}}{L_{\nu \rm e}} \frac{\varepsilon_{\overline{\nu}{\rm e}} - 2\Delta}{\varepsilon_{\nu \rm e} + 2\Delta} \right]^{-1},$$
$$\Delta = M_{\rm n} - M_{\rm p} \approx 1.29 \text{ MeV}$$

$$for Y_e < 0.5 (i.e., n-rich)$$

$$\varepsilon_{\overline{v}e} - \varepsilon_{ve} > 4\Delta \sim 5 \text{ MeV}$$

$$if L_{\overline{v}e} \approx L_{ve}$$

GRB workshop



## previous works: too neutron-rich ?

Goriely+2011 (also similar results by Korobkin+2011; Rosswog+2013)  $10^{\circ}$ 1.35–1.35M<sub>o</sub> NS 1.35-1.35M NS Solar of  $10^{-1}$ 1.20-1.50M NS  $10^{-2}$ Mass fraction  $10^{-3}$ mass fraction  $10^{-6}$  $10^{-7}$ 50 100 150 200 250 A strong r-process leading to fission recycling 0.015 0.021 0.027 0.033 0.039 0.045 0.051  $Y_{\rm e}$ severe problem: only A > 120; tidal (or weakly shocked) ejection another source is needed for of "pure" n-matter with  $Y_{e} < 0.1$ the lighter counterpart

## first simulation with full-GR and $\nu$

- Approximate solution by Thorne's Moment scheme with a closure relation
- Leakage + Neutrino heating (absorption on proton/neutron) included



# $1.3+1.3 M_{\odot}$ neutron star merger with full-GR and neutrino transport (SFHo)

simulation by Yuichiro Sekiguchi



### nucleosynthesis in the NS ejecta



- higher and wider range of Y<sub>e</sub> (~ 0.1-0.5) in contrast to previous cases Y<sub>e</sub> (= 0.01-0.05)
- values do not fully asymptote to Y<sub>e</sub> ~ 0.5 because of v/c ~ 0.1-0.3
- higher and wider range of entropy per baryon (= 0-50) in contrast to previous cases (= 0-3)



### post-process nucleosynthesis



### mass-integrated abundances



reasonable agreement with full solar r-process range for A = 90-240

GRB workshop

## heating rate for the NS-NS ejecta



heating rate for the mass-averaged abundances well fitted by the scaling law dq/dt ~ t<sup>-1.3</sup> (as well as by the solar r-pattern case)

but dependent on Y<sub>e</sub>; there might be directional (polar to equatorial) differences

### slide by Y. Sekiguchi Dynamical mass ejection mechanism & EOS

- <u>'Stiffer EOS'</u>
  - TM1, TMA
  - ► R<sub>NS</sub> : lager
  - Tidal-driven dominant
  - Ejecta consist of low T & Ye
     NS matter
- <u>'Intermediate EOS'</u>
  - ► **DD2**
- <u>'Softer EOS'</u>
  - ► SFHo, IUFSU
  - ► R<sub>NS</sub> : smaller
  - Tidal-driven less dominant
  - Shock-driven dominant
  - Ye can change via weak processes



See also, Bauswein et al. (2013); Just et al. (2014)



### slide by Y. Sekiguchi

### Effects of neutrino heating



GRB workshop

### dependence on EOSs

### adopting nucleosynthesis of Wanajo+2014

![](_page_23_Figure_2.jpeg)

softer EOS predicts less heavy r-process products, but
effects of EOSs are not large (good for the universality?)

### slide by Y. Sekiguchi

### Unequal mass NS-NS system: SFHo1.25-1.45

- > Orbital plane : Tidal effects play a role, ejecta is neutron rich
- Meridian plane : shock + neutrinos play roles, ejecta less neutron rich

![](_page_24_Figure_4.jpeg)

## dependence on the NS mass ratio

![](_page_25_Figure_1.jpeg)

small asymmetry predicts less heavy r-process products
moderate asymmetry is the best? (e.g., 1.3+1.4)

## comparison for different mass models

for neutron star mergers in Wanajo+2014; without fission

![](_page_26_Figure_2.jpeg)

✤ large differences between FRDM (1992, not 2012!) and HFB-21

### summary and outlook

![](_page_27_Picture_1.jpeg)

- NS mergers: very promising site of r-process and sRGBs
  - neutrinos play a crucial role (in particular for a soft EOS)
- still many things yet to be answered...
  - dependence on mass ratios of NSs and EOSs; how about BH-NS?
  - how the subsequent BH-tori contribute to the r-abundances?
  - r-process nova light curves as functions of time and viewing angle?