2015 Aug 31th Gamma-ray Burst conference @ RIKEN

Optical Polarimetry of GRB Afterglows

Katsutoshi Takaki^a

(Research Fellow of Japan Society for the Promotion of Science)

With thanks to

K. S. Kawabata^a, K. Toma^b, R. Itoh^a, R. Yamazaki^c, M. Yoshida^a

a : Hiroshima University, Japan b : Tohoku University, Japan c : Aoyama-Gakuin University, Japan

W hat is GRB (Gamma-ray Burst)

- \square Most energetic explosion in the universe ($\sim 10^{52}~{\rm erg}$)
- Occurring at <u>cosmological distance</u>
- Gamma-ray arises in the form of <u>relativistic jet</u>.
 We observe it along the axis of the jet.
- \square Long GRB (>2s) and short GRB (<2s)
- □ A part of long GRBs associate with SNe Ic

Spectral evolution

-15.5

becoming SNe Ic

GRB030329/SN2003d

April 8.13 April 10.04

G RB afterglow

- A considerable fraction of GRBs show <u>afterglows</u>, in X-ray, optical, NIR, and radio wavelength.
- □ GRBs are relativistic events. "jetbreak" ~1d after the burst.

http://spiff.rit.edu/classes/phys240 /lectures/grb_pres/grb_pres.html

S tandard emission model

Synchrotron Radiation is most likely

 \rightarrow A key to <u>*B***-field</u>** and <u>**Jet structure</u>**</u></u>

E ver polarimetry 1

Prompt

GRB	П (68% с.l.)	Peak energy (keV)	Fluence and Energy Range (erg $\rm cm^{-2}$)	z	Instrument
041291A	$65{\pm}26\%$	201^{+80}_{-41}	2.5×10^{-4} in 20–200 keV	$0.31^{+0.54}_{-0.26}$	IBIS
06122	>60%	188 ± 17	2.0×10^{-5} in 20–200 keV	$1.33_{-0.76}^{+0.77}$	IBIS
100826A	$25 \pm 15\%$	606^{+134}_{-109}	3.0×10^{-4} in 20 keV-10 MeV	$0.71 - 6.84^{1}$	GAP
110301A	$70\pm22\%$	107 ± 2	3.6×10^{-5} in 10 keV-1 MeV	$0.21 - 1.09^{1}$	GAP
110721	$84^{+16}_{-28}\%$	393^{+199}_{-104}	3.5×10^{-4} in 10 keV-1 MeV	$0.45 - 3.12^{1}$	GAP
140206A	>48%	98 ± 17	2.0×10^{-5} in 15–350 keV	$2.739 {\pm} 0.001$	IBIS

All high PD!

(Gotz+14)

E ver polarimetry 2

Jet collides to CSM/ISM

GRB	Z	$t_{obs} [s]$	PD	Note	Ref.	
060418	1.490	203 ~	< 8%		Mundell +07	
090102	1.547	161 ~	$10.2 \pm 1.3 \%$		Steel+ 09	
110205A			< 16 %		Cucchiara+ 11	
120308A	~3.2	$240 \sim 827$	$28 \rightarrow 16 \ \%$	PA const.	Mundell+ 13	
131030A	1.294		< 2 %		King+ 14	

K anata telescope + HOWPol

Kanata telescope

HHAO

 $(\underline{H}igashi - \underline{H}iroshima \underline{A}stronomical \underline{O}bservatory)$

- **I** Effective aperture 1.5 m
- □ Fair weather ratio ~50%
- Moving speed Azimuth axis 5 degree / s Altitude axis 2 degree / s <u>Extremely fast</u> as 1m-class

HOWPol

(<u>H</u>iroshima <u>O</u>ne-shot <u>W</u>ide-field <u>Pol</u>arimeter)

- Polarimetry with only one exposure
- \square Mechanical pol. due to nasmith focus ($P_{\rm inst} \sim 3.5 \pm 0.5\%$)

G RB auto-observation system

E ver polarimetry at HHAO

All observed GRB 129 Auto-observed GRB 77

	ID	Time [s]	Publication
1	GRB 091208B	149 ~ 1286	Uehara+ 12, ApJL
2	GRB 111228A	163 ~ 19000	KT+ in prep.
3	GRB 121011A	92 ~ 5241	
4	GRB 130427A	$10000 \sim 30000$	
5	GRB 130505A	~10000	
6	GRB 140629A	73 ~ 12000	KT+ in prep.
7	GRB 140907A	$622 \sim 10000$	

B asic ideas of GRB polarization

10/18

no time variability

I mportant model 1

Random *B*-field in micro-scale + off-axis jet beaming effect

(Sari +99; Rossi +04; Granot +99 etc.)

I mportant model 2

Group of independent patches having coherent *B*-field

(Gruzinov & Waxman +99)

Many coherent patches (N~50) $P = \frac{70\%}{\sqrt{N}} \sim 10\%$ not canceled out completely

Possible to produce complicated P.D.

Independent from jetbreak \rightarrow high P.D. at early epoch ?

i GRB 091208B $z = 1.063, T_{90} = 14.9 \pm 3.7 s$

ii GRB 111228A $z = 0.714, T_{90} = 101.2 \pm 5.4 s$

14/18

iii GRB 121011A $z = unknown, T_{90} = 75.6 \pm 12.7 s$

Both GRBs are <u>small PD at ~10⁴ s</u>

 $GRB \ 140629A \quad z = \sim 2.28, T_{90} = 75.6 \pm 12.7 \ s$ V

- \square GRB polarization : 1 event / yr
- □ Still unclear, no uniformed picture
- □ More observation samples, especially early phase.