True Imaging trigger for GRBs by Electron-Tracking Compton Camera (ETCC) with an well-defined PSF

V. Schönfelder+ (A&AS, 2000)

CONTENTS

How to access 1 mCrab sources
MeV gamma-ray imaging by ETCC
Fluence trigger for GRBs
Future plan & Summary

2/Sep./2015 GRB-ws2015@Riken

 Y.Mizumura¹, T. Tanimori¹, A. Takada¹, S. Iwaki¹, T. Kishimoto¹, S. Komura¹, H. Kubo¹, Y. Matsuoka¹, T. Miyamoto, K. Miuchi², T. Mizumoto¹, K. Nakamura¹, M. Oda¹, J.D. Parker¹, T. Sawano³, S. Sonoda¹, T. Takemura¹, D. Tomono¹
Dept. of Physics, Kyoto University, Japan, 2) Dept. of Physics, Kobe University, Japan, 3) Dept. of Physics, Kanazawa University, Japan

How to reach 1 mCrab

Target in the next generation MeV γ observatory Requested Sensitivity ~10⁻¹² erg cm⁻² s⁻¹ (1 mCrab)@10⁶ s

Significance
$$\propto \frac{EA \bullet S}{\sqrt{EA \bullet (S + BG \bullet \theta^2)}}$$

S: γ-ray flux from object

Effective Area (EA) >2x100 cm² Possible !

Good BG rejection ---> BG(/str) ~ Cosmic diffuse gamma Possible (only ETCC) !

Point Spread Function (PSF) radius 0 ~1° PSF in Compton Camera is very ambiguous !

Solution is Fine Electron Tracking

Electron-Tracking Compton Camera (ETCC) in SMILE-II

Point Spread Function in Compton Camera

Future Sensitivities by ETCC

Sensitivities are calculated simply from effective area and PSF with no use of MLEM

 SMILE-II (Balloon, in USA) (30 cm)³ ETCC with ~1-4 cm² Crab, Cyg X-1 at >5σ, +Polarization

 SMILE-III (Balloon, in polars) (40 cm)³ ETCC x2 = ~80cm² Deep Survey, GRB SMILE-Satellite: (50 cm)³ ETCC x 4

SMILE-II, III PSF(7°) SMILE-Satellite PSF(1.2°)

Assumed BG flux:

SMILE-II, III: observed flux by SMILE-I SMILE-Satellite: 2x (Cosmic diffuse gamma)

Detection of GRB by "True Imaging"

Noise area = $(\Delta \phi \times \Delta \phi)$ Noise area = $\Delta \theta \times \Delta \theta$ $\Delta \phi / \Delta \theta = 10$ Noise reduction -> 1/100

Sensitivity for GRBs Satellite-ETCC 250cm² $\Delta \theta$ Trigger FoV = 4x4° T_{obs.} ~ 10 sec

> BG (4x4°) $2\gamma --> 12\gamma > 8\sigma$ $\Delta\theta < 0.5^{\circ}$ (position accuracy) --> S ~20 γ ->10⁻⁹ erg cm⁻² s⁻¹

Short GRBs (E_{peak} > ~300 keV)

Swift less efficient for short GRB than BATSE due to its low sensitivity >100 keV

Fluence ~10⁻⁸ erg cm⁻²

Fluence Trigger for standard long GRB

(G. Ghirlanda et al. MNRAS 448, (2015))

1. Time dilation

Photon flux trigger is affected strongly by time dilation. Fluence trigger is NOT affected.

2. Redshift

Broad band SED (keV to 10 MeV) very little effect on fluence.

- Satellite-ETCC (T₉₀: 10-100 sec)
- --> Fluence ~10⁻⁸ erg cm⁻²
 - (2-3 GRBs/year/str (z>10))
 - + wide FoV >4 str
- --> ~10 GRBs/year (z >10) 200 GRBs/year (z > 5)

Energy band

50-300 keV --> 50 keV-10 MeV more GRBs will be detected.

Ultra Long duration GRBs (POP-III)

Figure 6. Same as Figure 5, but for the *EXIST* (5–600 keV) case. The red dashed line represents the *EXIST* sensitivity $f_{sen} \sim 2.4 \times 10^{-10}$ erg cm⁻² s⁻¹ (5–600 keV, 5σ) in the longest exposure timescale at the on-board process ($\Delta t \sim 512$ s; Hong et al. 2009). Note that we focus on Pop III GRBs at z = 9 in this figure.

Figure 3. Same as Figure 2 but for the *EXIST* case. *EXIST* will have the limited energy range of 5–600 keV. The red dashed line represents the *EXIST* sensitivity $f_{\rm sen} \sim 2.4 \times 10^{-10}$ erg cm⁻² s⁻¹ (5–600 keV, 5 σ) in the longest exposure timescale at the on-board process ($\Delta t \sim 512$ s; Hong et al. 2009).

Assumed E_p - E_{iso} relation (Amati) --> E_p ~120 keV @z = 9

EXIST limit: 2.4×10^{-10} erg cm⁻² s⁻¹ (500 s) Pop-III Flux $(10^{-10} \text{ erg cm}^{-2} \text{ s}^{-1} \text{ (very faint)})$ But, Fluence $(10^{-5} \text{ erg cm}^{-2} \text{ (Intense)})$

Satellite-ETCC; S/JN >5σ 10³s; S ~90γ BG 200γ -> 4x10⁻¹¹ erg cm⁻² s⁻¹ 10⁵s; S ~800γ BG 2x10⁴ γ -> 4x10⁻¹² erg cm⁻² s⁻¹

Exploring GRB astronomy by Balloon-SMILE 1. SMILE-II one-day flight(s) for Crab and Cyg X-1 (Anytime, OK) 2. Next plan, SMILE-III Long-duration flight with larger ETCCs Polar region 14-50 days (T_{obs} >10⁶ sec) 40 cm-cubic ETCC x2 modules (Eff. Area ~80 cm²) GRB Search in Long duration flight 10^{6} s --> ~3x10⁻¹¹ erg cm⁻² s⁻¹ (+ FoV of 4 str) --> ~1 GRBs/day In addition, Polarization Modulation factor 0.6 at 130 keV in SPring-8 Modulation Curve MDP ~ 6% for 10^{-6} erg cm⁻² s⁻¹ (2-3 GRBs/month) ~ 20% for 10⁻⁷ erg cm⁻² s⁻¹ (~10 GRBs/month) Odeo **GRB** detection in SMILE-III POP-TT1 Simulated by T. Sawano 150 - 1000 keV fluence (erg cm⁻²) 10⁻⁵ 10⁻⁶ 45deg 10⁻⁷ -150 -100 BATSE 10^{-8} Fermi/GBM 1 6 $> 5\sigma$ by COMPTEL w/ BATSE data > 5σ by COMPTEL w/ COMPTEL data 1.2 10⁻⁹ SMILE-III w/ toff = 100 s SMILE-III w/ toff = 1000 s COMPTEL w/ toff 0.6 10-10 0.01 0.1 100 1000 10000 10 10 Azimuth [deg.] time (sec)

Summary

- ETCC provides an well-defined PSF which reveals the way to reach 1 mCrab sensitivity without assuming the use of Optimization Algorithm.
- A good PSF gives a >10 times better significance than conventional Compton cameras with efficient BG rejection ability of dE/dx.
- Clear imaging with an well-defined PSF in sub-MeV band would enable a true Imaging Trigger (Fluence Trigger) for GRBs and provide changes to reach most distant GRBs of any type (Short, Long, and Ultra-long).

 SMILE-III (long-duration balloon) will surely certificate above ability of ETCC with measuring polarization of GRBs.

Details of ETCC: Tanimori et al., ApJ (2015), 810, 28