GRBs as reionization probes

戸谷友則 (TOTANI, Tomonori) Department of Astronomy, Univ. of Tokyo

> GRB Workshop 2015 RIKEN, 2015 Aug. 31 - Sep. 2

Talk Plan

- + concentrate on "Ly α damping wing fitting analysis" to get constraints on IGM neutral fraction
- review on GRBs as a reionization probe: the status before GRB 130606A
- On the results from GRB 130606A @ z=5.9
 - the best opportunity ever for reionization study by GRBs
 - controversy between Gemini/Subaru/VLT? what's the origin?
- + On the effect of Ly α cross section formulae (as a function of wavelength) adopted
 - + need to be careful in the "high precision GRB cosmology era"

Cosmic Reionization

- The Universe (hydrogen) became neutral at z~1100
 - + the cosmic recombination
 - + observed as CMB
- Hydrogen in IGM today is highly ionized
 - + the Gunn-Peterson Test
- The universe must have been reionized at around z~10
 - most likely by UV photons by first stars
 - when? how? important benchmark to understand galaxy formation

Djorgovski+

White+'03

- + Ly α absorption features of QSOs indicating that IGM neutral fraction rapidly increasing to $z \sim 6$
 - + close to reionization?
- + but saturated GP troughs only gives a lower limit of $n_{\rm HI}/n_{\rm H} > 10^{-3}$
 - Fan+'05

Observational Constraints on Reionization History

A Next Step: Using Ly α Red Damping Wing

- measurement of f_{HI}=n_{HI}/n_H, rather than lower limit, is possible if damping wing feature by neutral IGM is detected!
- GRBs especially powerful:
 - simple power-law unlike quasars
 - no proximity effect
 - more normal regions than quasars
- + Obstacles:
 - + low event rate of high-z GRBs
 - contamination by HI in host galaxies
- GRB 050904: the first meaningful constraint
 - 95% C.L. upper limit f_{HI} < 0.6 (TT +'06)

GRB 050904@z=6.3, TT+ '06

Observational Constraints on Reionization History

The best opportunity ever: GRB 130606A

- exceptionally bright afterglow
- ultra-high S/N spectra taken by Gemini, GTC, Magellan, Subaru, VLT, ...
- host HI at most log(N_{HI})<
 19.8, good for IGM
 study!
 - + c.f. 21.6 for GRB 050904

Chornock+'13

Gemini vs. Subaru vs. VLT

- + Chornock et al. 2013 (Gemini, ApJ, 774, 26)
 - + no evidence for IGM HI by damping wing analysis
 - + $f_{HI} < 0.11 (2 \sigma)$
 - * spectral index $\beta = -1.99$ (f_{$\nu \propto \nu \beta$}), very different from $\beta \sim -1$ found by more recent studies
- Totani et al. 2014 (Subaru, PASJ, 66, 63)
 - + ~3 σ preference for IGM HI, with
 - f_{HI} ~ 0.09 if z_{IGM, u} = zGRB = 5.913 (β =-0.93)
 - * f_{HI} ~ 0.4 if z_{IGM, u} = 5.83 < 5.913 (β =-0.74) \leftarrow now disfavored from VLT measurement of β
- + Hartoog et al. 2014 (VLT, arXiv:1409.4804)
 - + $\beta = -1.02$ from optical-NIR spectrum
 - + no evidence for IGM HI, $f_{HI} < 0.03 (3 \sigma)$

Damping Wing Analysis for Subaru Data

- + Subaru/FOCAS spectrum in 10.4-13.2 hr after the burst
- + S/N=100 per pixel (0.74A)!
- + 8400-8900 A which is the most sensitive to IGM HI signature
- avoid strong absorption

Fitting Residuals

- power-law + host HI only
 - + free parameters: power-law index, N_{HI}, σ_v
 - showing curved systematic residual
 - amplitude ~ 0.6% of continuum flux
- diffuse IGM HI can reduce the residual by about 3 sigma statistics
 - + $f_{HI} \sim 0.1$, if IGM extending to $z_u=z_{GRB}=5.913$

DW from various components

- wavelength close to $Ly \alpha$ center is dominated by HI in the host galaxy
- IGM HI becomes relatively important at wavelength far from Ly α
- wavelength range choice is a crucial issue in the damping wing analysis for reionzation!

TT+'14

Very subtle! systematics?

- various sources of systematics examined, but unlikely to explain the 0.6% curvature in the narrow range of 8400-8900 A
 - spectrum reduction, calibration
 - calibration accuracy is < 0.2%
 - no known systematics can explain the observed curvature
 - extinction at host
 - + extinction does not explain the strong curvature in the short wavelength range
 - + DLAs on the sightline
 - + disfavored from Ly β and metal absorption

what's the origin of Subaru/VLT controversy?

- To reveal this, the Subaru and VLT spectra have been exchanged by the two teams
 - I thank the VLT team for kindly agreeing with this exchange
- VLT spectrum averaged on the Subaru spectrum grids
 - + VLT has a better spectral resolution
 - + S/N similar per wavelength
- no systematic trend on > 100 Å scale
- * how about adopting the same Subaru analysis code on the VLT spectrum?

Result of TT's-code on VLT spectrum. 1

Table 1. The best fit parameters of the fittings to the Subaru and VLT spectra*

model	$\lg(N_{ m H_{1}}^{ m host})^{\dagger}$	$\sigma_v ({ m km/s})^{\ddagger}$	IGM $f_{\rm H_{I}}$	χ^2	$\Delta\chi^{2\S}$			
fit to the Subaru spectrum								
host HI only	$19.877^{+0.008}_{-0.015}$	$0.0^{+89.9}_{-0.0}$	fixed to zero	95.10	14.48			
host+IGM HI	$19.768\substack{+0.032\\-0.032}$	$62.0^{+38.0}_{-62.0}$	$0.061^{+0.007}_{-0.007}$	80.62	-			
fit to the VLT spectrum								
host H I only	$19.806^{+0.014}_{-0.016}$	$0.0^{+52.0}_{-0.0}$	fixed to zero	292.57	11.89			
host+IGM HI	$19.621\substack{+0.059\\-0.057}$	$0.0^{+100.0}_{-0.0}$	$0.087^{+0.017}_{-0.029}$	280.68	-			

- + β fixed at -1.02 as measured by VLT
- IGM HI extends to $z_{GRB,u} = z_{GRB} = 5.913$
- + The original Subaru result (~3 σ preference for IGM HI) confirmed using VLT spectrum

Result of Subaru-code on VLT spectrum. 2

+ the same trend for the fit residuals by no IGM HI model

What's the origin of discrepancy?

- wavelength ranges used are very different for Subaru and VLT papers
 - + 8406-8462 Å by VLT
 - * 8426-8900 Å by Subaru (<8426Å avoided because of strong dependence on host HI velocity distribution)
- when the TT's-code adopted on the VLT spectrum, I confirmed the VLT paper result (no evidence for host HI)
- + the VLT-paper range is highly sensitive to velocity distribution of HI in the host
 - + $\sigma_v = 61.8 \pm 3.3$ km/s by our fit result
 - + systematics about unknown realistic velocity distribution is a worry

On the Ly α cross section formulae

classical Rayleigh scattering

$$\sigma_{\mathrm{R}}(\omega) = \sigma_{\mathrm{T}} \, rac{f_{12}^2 \, \omega^4}{(\omega_0^2 - \omega^2)^2 + \Gamma_{2p}^2 \omega^2},$$

+ Lorentzian

$$\sigma_{\rm L}(\omega) = \sigma_{\rm T} \left(\frac{f_{12}}{2}\right)^2 \frac{\omega_0^2}{(\omega_0 - \omega)^2 + \Gamma_{2p}^2/4}$$

Peebles' two-level approximation

$$\sigma_{\rm P}(\omega) = \frac{3\lambda_0^2}{8\pi} \frac{\Gamma_{2p}^2 (\omega/\omega_0)^4}{(\omega_0 - \omega)^2 + \Gamma_{2p}^2 (\omega/\omega_0)^6/4}$$

second order perturbation theory for fully quantum mechanical scattering (Bach+'14)

$$\sigma(\omega) = \sigma_{\rm L} \frac{4 \left(\omega/\omega_0 \right)^4}{\left(1 + \omega/\omega_0 \right)^2} \left[1 + f(\omega) \right]$$

$$f(\omega) = a \left(1 - e^{-bx}\right) + cx + dx^{2} \begin{cases} a = 0.376 \\ b = 7.666 \\ c = 1.922 \\ d = -1.036, \end{cases}$$

effect on HI opacity by Ly α cross section formulae

- ~10% difference in cross section / HI opacity
- The Peebles' formulae often used shows the largest deviation from BL (Bach-Lee) formula
- How much is the effect on the damping wing fitting results?
 - perhaps the evidence for IGM HI reported by TT+'14 just an artifact by using inaccurate cross section formula?

Fitting results dependence on cross section formulae

- + on the Subaru data of the GRB 130606A spectrum
- + with the fitting method of TT+'14, only changing Ly α cross section formula
- + preference to IGM HI by ~3-4 σ unchanged

cross section formula	$\lg(N_{ m H{\scriptscriptstyle I}}^{ m host})$	σ_v (km/s)	IGM $f_{\rm H{\scriptscriptstyle I}}$	χ^2	$\Delta \chi^2$				
host H I only model									
Lorentzian	$19.869^{+0.010}_{-0.010}$	$0.0^{+70.2}_{-0.0}$	fixed to zero	91.81	10.74				
Rayleigh	$19.875^{+0.010}_{-0.010}$	$22.1^{+63.1}_{-22.1}$	fixed to zero	94.21	13.50				
Peebles	$19.877^{+0.008}_{-0.015}$	$0.0^{+89.9}_{-0.0}$	fixed to zero	95.10	14.48				
Bach & Lee	$19.866^{+0.009}_{-0.009}$	$0.0^{+63.5}_{-0.0}$	fixed to zero	90.66	9.88				
host + IGM H I model									
Lorentzian	$19.755^{+0.033}_{-0.033}$	$100.0^{+0.0}_{-100.0}$	$0.057^{+0.0012}_{-0.007}$	81.07	-				
Rayleigh	$19.765_{-0.033}^{+0.033}$	$54.6^{+45.4}_{-54.6}$	$0.060^{+0.008}_{-0.007}$	80.71	-				
Peebles	$19.768^{+0.032}_{-0.032}$	$62.0^{+38.0}_{-62.0}$	$0.061^{+0.007}_{-0.007}$	80.62	-				
Bach & Lee	$19.751_{-0.029}^{+0.029}$	$100.0^{+0.0}_{-100.0}$	$0.056^{+0.011}_{-0.006}$	80.78	-				

Conclusions (1/2)

- GRB 130606A gives the best ever opportunity to probe reionization by GRBs
- + ~3 σ evidence for IGM HI is found by the damping wing analysis of Subaru spectrum
 - $f_{HI} \sim 0.1$ if $z_{IGM,u} = z_{GRB} = 5.913$
 - robust against known systematics (spectrum, extinction, intervening DLA)
 - the first evidence for intervening HI to GRB sightlines
 - suggesting that the reionization not yet complete at z~6, but needs more sightlines to examine inhomogeneity
- + discrepant result from VLT (Haartoog et al. 2014)?
 - data consistent with each other, and the same result confirmed when the same analysis is done on the two different spectra
 - high precision damping wing analysis indeed possible!
 - discrepancy comes from different wavelength ranges
 - need to be careful for systematics in analysis methods!
 - + systematics about host HI velocity distribution seems serious when using range close to Ly α resonance

Conclusions (2/2)

- Now we are in the era of "GRBs as a high precision reionzation probe"
 - + sensitive to $f_{HI} \sim 0.1$ at $z\sim 6!$
 - systematics must be carefully treated
- + Choice of Ly α cross section formulae is important in a highprecision analysis such as GRB 130606A
 - + but preference to IGM HI reported by TT+'14 unchanged
- + current limitation of GRBs as a reionization probe:
 - + low event rate of sufficiently bright GRBs at z>~6
 - + this situation will be improved by 30m-class telescopes
 - future GRB missions in synergy with 30m-class telescopes will be crucial
 - good data for many GRBs would reveal not only the mean but also inhomogeneity of reionization history