
Particle acceleration
in  

superluminal strong waves

Yuto Teraki
RIKEN

collaborators
H. Ito, S. Nagataki

ref. ApJ. 805, 138 



Superluminal strong waves?
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Trapping effect
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Where is this wave?

 For example,
Around the termination shock of 

the pulsar wind nebulae

There can be the waves 
in the GRB jets

(cf. McKinney & Uzdensky 2012)



19
90
Ap
J.
..
34
9.
.5
38
C

Coroniti 1990

Crab pulsar
T =

2�

��
= 33ms

rTS � 109 � rLC

at the termination shock

Lsd = 4.6� 1038erg/s
a = 3.4� 1010

�rLC

r

� �
Lsd

1038erg/s

�1/2

�sw = cT � 109cm
wavelength

(Amano & Kirk 2013)

Striped wind



Mode conversion
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Striped wind
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Amano & Kirk 2013

Super Luminal Strong Waves (SLSW)
should exist around the termination shock



Aim

Investigation the electron acceleration 
in superluminal waves 

(and radiation from these electrons)

Method
Numerical.

Analytically described waves
and test particles

(Lienard-Wiephert potentail 
for the radiation spectra)



Method: SLSWs
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Summary of the situation
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2. Calculate the radiation spectrum from the Lienard-Wiephert potential

unit vector toward the observer retarded timet0

d
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Acceleration and radiation spectra

: isotropic

1. solve the equation of motion
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Results: 4-velocities
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Fig. 1.— Distribution of 4-velocity for eςsec/mc = 0.1 (green) and 1 (red) at t = 3× 104ω−1
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Fig. 2.— Particle energy distributions for t = 3 × 104ω−1
0 and α = 11/3. The horizontal

axis is Lorentz factor of the electrons, and the vertical axis is dN/dγ. The curved lines are
corresponding to eςsec/mc = 10−3 (red), 0.1 (green), 0.5 (light blue) and 1 (yellow).
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Results: particle acceleration
4-velocities
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Discussion: Efficiency of acceleration
DSA Bohm limit

in gyro time

SLSW acceleration (strongly strapped)

is realized 

much slower than DSA

Energy gain in a timescale of

��mc2 ' �0mc2 Tg =
�0mc

eB

= �0mc2

⌧ =
�0mc

eE✓
= Tg/✓ � Tg

eEkv⌧ ' �0mc2

This acceleration mechanism 
is important only for the pre-acceleration 

for the DSA in the upstream



Discussion: 2nd order acceleration?
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can be a pre-acceleration mechanism and may be important for the DSA in the termination

shock of the pulsar wind nebulae.

Phase velocity of the primary wave is the parameter which determines the efficiency

of the trapping and therefore it is also important for producing the anisotropic 4-velocity
distribution and non thermal energy distribution. We adopted ωp =

√
5 × 10−2ω0. It

corresponds that the phase velocity of the primary wave is 0.5% larger than light speed.
This difference from c weaken the trapping effects, but it is not significant in this parameter.
If we make ωp closer to ω0, this result would change, but we do not perform such calculations

in this paper, since the wave form should be changed, and moreover these waves should be
unstable. The SLSW in the over dense (ωp > ω0) plasma is investigated by Max & Perkins

(1971), they gave a solution of the wave and the form is not the sine function but the
”sawtooth” shape. This wave are known to be strongly unstable (Max & Perkins 1972).

Thus, if we consider the case ωp ! ω0, the situation becomes more complicated. Such
situation will be considered in future works.

Here, we discuss the 2nd order acceleration mechanisms. In some cases, the non-thermal
energy distributions are obtained in the isotropic turbulences. On the contrary, our results

do not show such features but show thermal like distribution. Comparing with an instructive
paper on the 2nd order acceleration (Becker et al. 2006), we shortly consider about it. The
transport equation of particles can be expressed as
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∂
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− f
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4πp2
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where p is the momentum, f is the distribution function, D(p) is the momentum diffusion

coefficient, tesc is the mean escape time, S represents the sources, and A(p) is the additional,
systematic acceleration or loss. In our numerical method, tesc is infinity which means no

escape, and S can be described by delta function as an instantaneous injection. We note
that tesc affect the cutoff energy, but it does not affect cutoff shape from Becker et al. (2006).

From the lower energy spectral indices and physical consideration, there is no additional
systematic acceleration in our simulation. Hence We set A(p) = 0. Equation (26) is reduced
to
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∂
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+Q

δ(p− p0)δ(t)
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, (27)

where Q is a constant which determine the injection number and δ(t) is the delta function,
which represent instantaneous injection at t = 0. In general cases, D(p) depends on the

momentum, since the scatterer for momentum diffusion is the components of magnetic tur-
bulence which have same scale length with the Larmor radius of the particles. Becker et

al. (2006) conclude that the higher energy components than peak is affected by momentum
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dependence on D(p). They assumed D(p) ∝ pq, where q is a real number. When q is large,

say, q = 2 (hard-sphere case), we have non-thermal distribution. On the other hand, when
q is smaller than 2, such as 5/3 which corresponds to Kolmogorov turbulence or 3/2 which
corresponds to Kraichnan turbulence energy spectra show quasi-exponential cutoff. In our

simulation, the scattering occurs with non-resonant waves, because the strength is suffi-
ciently large and the orbit becomes non linear and largely affected even though the resonant

condition is not fulfilled. This implies that D(p) does not depend on p in our cases, in other
wards, q = 0. For t ̸= 0, equation (28) can be reduced to

∂f

∂t
=

D

p2
∂

∂p

(
p2
∂f

∂p

)
, (28)

where D is a constant. This equation is the well known diffusion equation. The result shows

Gaussian shape, so that dN/dp ∝ p2f shows thermal-like shape. Thus, it is natural outcomes
that we have no non-thermal tail in high energy region than peak for isotropic turbulences.

In the study of Blandford (1973), the Fokker-Planck equation is solved in the context
of the strong electromagnetic waves. Next we compare our results with it. They assumed

isotropic radiation field, and spectral index of the waves is larger than 0, which is smaller
than 0 in our calculation. The Lorentz factor is assumed to be much larger than a2, which is
not restricted in this paper. They also consider the radiation losses for synchro-Compton or

inverse Compton, which are not included in this paper. Although it is difficult to make direct
comparison, since there are many difference in the assumption, we make some comments on

the resultant energy spectra. Their equilibrium energy distribution is power law plus cutoff
as

N(γ) ∝ γD exp(−γ5), (29)

where D is a number which is relevant to the Fokker Planck coefficients parallel and per-
pendicular to the velocity, and it is always larger than 0 for isotropic turbulence. The shape

is consistent with our results for the isotropic or nearly isotropic turbulence even though
our power law index of the turbulent field is negative. The trapping effect is not effective

for the isotropic turbulence, so this similarity would be reasonable. They also noted that
if we take simplest assumption that the electromagnetic turbulence consists of the random
electromagnetic pulses, the resultant energy spectrum is given by

N(γ) ∝ γ2 exp(−γ2). (30)

Under such assumption, the particle trapping is extremely inefficient. The power law index
of our results for eςsec/mc = 1 or 0.1 are also ∼ 2. Thus, this coincidence may also show the
inefficiency of the particle trapping.

For resonant scattering,

Non resonant scattering D (1)

1

does not depend on p (1)

1

is a Gaussian function.

for t ̸= 0 (1)

1

f (1)

1

dN

dγ
∝ p2f (1)

1

power law with index 2 
+ exponential cutoff

: 
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dependence on D(p). They assumed D(p) ∝ pq, where q is a real number. When q is large,

say, q = 2 (hard-sphere case), we have non-thermal distribution. On the other hand, when
q is smaller than 2, such as 5/3 which corresponds to Kolmogorov turbulence or 3/2 which
corresponds to Kraichnan turbulence energy spectra show quasi-exponential cutoff. In our

simulation, the scattering occurs with non-resonant waves, because the strength is suffi-
ciently large and the orbit becomes non linear and largely affected even though the resonant

condition is not fulfilled. This implies that D(p) does not depend on p in our cases, in other
wards, q = 0. For t ̸= 0, equation (28) can be reduced to
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where D is a constant. This equation is the well known diffusion equation. The result shows

Gaussian shape, so that dN/dp ∝ p2f shows thermal-like shape. Thus, it is natural outcomes
that we have no non-thermal tail in high energy region than peak for isotropic turbulences.

In the study of Blandford (1973), the Fokker-Planck equation is solved in the context
of the strong electromagnetic waves. Next we compare our results with it. They assumed

isotropic radiation field, and spectral index of the waves is larger than 0, which is smaller
than 0 in our calculation. The Lorentz factor is assumed to be much larger than a2, which is
not restricted in this paper. They also consider the radiation losses for synchro-Compton or

inverse Compton, which are not included in this paper. Although it is difficult to make direct
comparison, since there are many difference in the assumption, we make some comments on

the resultant energy spectra. Their equilibrium energy distribution is power law plus cutoff
as

N(γ) ∝ γD exp(−γ5), (29)

where D is a number which is relevant to the Fokker Planck coefficients parallel and per-
pendicular to the velocity, and it is always larger than 0 for isotropic turbulence. The shape

is consistent with our results for the isotropic or nearly isotropic turbulence even though
our power law index of the turbulent field is negative. The trapping effect is not effective

for the isotropic turbulence, so this similarity would be reasonable. They also noted that
if we take simplest assumption that the electromagnetic turbulence consists of the random
electromagnetic pulses, the resultant energy spectrum is given by

N(γ) ∝ γ2 exp(−γ2). (30)

Under such assumption, the particle trapping is extremely inefficient. The power law index
of our results for eςsec/mc = 1 or 0.1 are also ∼ 2. Thus, this coincidence may also show the
inefficiency of the particle trapping.
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Summary for particle acceleration
・We calculate the electron acceleration in superluminal  
    strong waves and radiation from them.

・When the primary wave is dominant (or even comparable to  
   the secondary waves), selective acceleration occurs.  
   It form the power law energy distribution.

・This acceleration mechanism can play a crucial role  
    for the injection to the shock acceleration (DSA) in the  
    upstream of the termination shock.



Radiation



Results: Radiation spectra e&sec
mc

= 0.1
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ω
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Fig. 5.— Radiation spectra from the accelerated electrons for eςsec/mc = 0.1 at t =
3 × 104ω−1

0 . The observer direction is in the x direction. The curved (green) line is the

synchrotron theoretical curve for comparison.
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ω
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Fig. 4.— Radiation spectra from the accelerated electrons for eςsec/mc = 0.1 at t = 3 ×
104ω−1

0 . Vertical axis is the flux in arbitrary unit and horizontal axis is frequency in unit at
eς/mc. The observer direction is n⃗ = (10−2, 0,

√
1 − 10−4), which is nearly parallel to the

wavevector of the primary wave êz. The curved blue line is the synchrotron theoretical curve.
The straight green line is Fω ∝ ω−5/3 and straight brown line is Fω ∝ ω2/3 for comparison.
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Results: Radiation spectra– 28 –
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Fig. 4.— Radiation spectra from the accelerated electrons for eςsec/mc = 0.1 at t = 3 ×
104ω−1

0 . Vertical axis is the flux in arbitrary unit and horizontal axis is frequency in unit at
eς/mc. The observer direction is n⃗ = (10−2, 0,

√
1 − 10−4), which is nearly parallel to the

wavevector of the primary wave êz. The curved blue line is the synchrotron theoretical curve.
The straight green line is Fω ∝ ω−5/3 and straight brown line is Fω ∝ ω2/3 for comparison.
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Observation
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equation (28) can be further reduced to

∂f

∂t
=

D

p2
∂

∂p

(
p2
∂f

∂p

)
, (29)

where D is a constant. This equation is the well known diffusion equation. The distribution

function shows Gaussian shape, so that dN/dp ∝ p2f shows thermal-like shape. Thus, it is
natural outcomes that we have no non-thermal tail in the high energy region for isotropic
turbulences.

4.4. Length scale of the acceleration region

The length scale in which the SLSW can exist is also unsolved, but is an important

problem. Here we estimate the length scale which is needed for the acceleration. We use K
and K ′ frames which are used above. We assume that an electron moving toward x′-direction

in K ′ frame. First, we consider the case that this electron does not trapped. The length
scale in K ′ frame for one deflection is ∼ c/ω′

0, where ω
′
0 is the typical frequency of the waves.

This scale is written in K frame as L ∼ Γ(v + V )/ω′
0. Using the Lorentz transformation of

time, we obtain
L ∼ 4Γ2c/ω0, (30)

where ω0 is the frequency in K-frame which can be regarded as the spin period of the pulsar.
It is estimated by using the Crab parameters as

L ∼ 6× 1012
(

Γ

102

)2

cm. (31)

Next we consider the trapped electrons. The length scale in K ′ frame is ∼ a2γ20c/ω
′
0. In K

frame, it is

L ∼ 6× 1016
(

Γ

102

)2(γ′0
10

)2

cm. (32)

This is shorter than the radius of termination shock of Crab nebula only a factor of 5. From

this estimation, it can be realized that the maximum Lorentz factor which is achieved in our
simulation is an upper limit, since it may not oscillate a few period. On the other hand,
the planer wave approximation become inadequate if the length scale is comparable to the

termination shock radius. Therefore, the acceleration by secondary waves without trapping
can play a role in the upstream, but we should be careful about trapped acceleration. In

other words, the maximum energy of the trapped acceleration can be determined by the
scale length of where the SLSWs exist.
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4.5. Observational prospect

Lastly we discuss the possibility observing the signature of pre-acceleration by the pri-
mary wave. The typical radiation in this situation is the synchro-Compton radiation from

the trapped electrons. The maximum frequency of the synchro-Compton radiation in K ′

frame is written as

ωmax ∼ γ′2max

eς

mc
. (33)

The maximum Lorentz factor may be determined by the scale limit as we show. However,

here we suppose the acceleration region is sufficiently large to achieve the maximum energy
in one cycle of the trapping electron γ′max ∼ a2γ′0. We note that Photon Formation Length

of the typical synchro-Compton photon (cf. Teraki & Takahara 2014) is much shorter than
the length scale of whole orbit. Therefore, we can estimate the typical radiation frequency
without the information of whole orbit. Here we suppose that the energy density of SLSW

and electrons are highest near region to the termination shock. The typical frequency of this
radiation in the observer frame is estimated as

ω ∼ Γγ′2max

eB/Γ

mc
≃ 2× 1010

(
γ′max

103

)2( B

10−3G

)
s−1. (34)

Thus, it can be observed as a radio knot. The observable area is restricted as ∼ (rTS/Γ)2

by the beaming effect of the upstream bulk motion. Interestingly, small radio knots with

scale ! 1015cm are observed near the termination shock by VLBI imaging (Lobanov, Horns,
& Muxlow 2011). If we adjust the observable area to this observation, the bulk Lorentz
factor is constrained to Γ " 102. This value is consistent with our scenario and acceptable

for the PWNe models. If this radio photons are emitted as our model, unfortunately, no
high energy counter parts which emitted by inverse Compton scattering can be observed.

The luminosity should be much smaller than the gamma-ray from whole nebula, and current
gamma-ray observations cannot resolve spatial structure of the PWNe.

5. Summary

We have investigated the electron acceleration in the superluminal strong waves and
radiation from them. We considered two classes of waves. One is the primary wave, and

the other is the secondary waves which are isotropically distributed. We took the amplitude
ratio of them as a parameter. When the primary wave is dominant, the electrons which

are moving nearly along wavevector direction are selectively accelerated, and form a non-
thermal energy distribution. On the other hand, when the secondary waves are dominant,

the energy distribution shows thermal like shape and do not show the power law tails. We

Radio emission

constrained by

LTS = 3⇥ 1017cm

Area
A ⇠ L2

�2

from beaming effect



Summary
・We calculate the electron acceleration in superluminal  
    strong waves and radiation from them

・When the primary wave is dominant, selective acceleration  
    occurs. It can be important for the injection into DSA

・Radiation features are understood by considering the  
    synchro-Compton & jitter radiation in the secondary waves.
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Estimation of     of entropy wave
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Entropy wave in upstream
In upstream frame,

wavelength of  entropy mode
inertial length c/!p
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: thermal Lorentz factor

Rankine-Hugoniot relation
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Entropy wave in downstream
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Energy in shock rest frame
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Acceleration efficiency: weakly trapped population

SLSW acceleration is important 
only before cross the shock (upstream)

For electrons accelerating by DSA, �0 � a

random walk �E = amc2 t = 1/!minone step

Mean energy gain in gyro time
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2
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This acceleration can be important for injection into DSA



Condition for Maxwell distribution
・Distribution for some direction does not depend on  
    the distribution for other direction
・Distribution does not change if we rotate the axes 
・Distribution is a dependent only on the absolute of the momentum
・Total energy does not change 
・Equipartition of energy 

Total energy does not conserved.

However, other conditions are nearly  achieved.

Thus, quasi Maxwellian can be realized 



Radiation spectra for 
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1-wave test calculation

３、Calculate the radiation spectrum using Lienard-Wiechert potential

unit vector toward the observer retarded timet0

Inject an electron and solve the EOM 
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Head-on collision
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Rear-end collision
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Interpretation of the peak frequency 1
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Crab flare as a jitter radiation of a SLSW
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