Particle acceleration in superluminal strong waves

Yuto Teraki RIKEN

collaborators H. Ito, S. Nagataki

ref. ApJ. 805, 138

Superluminal strong waves?

Electromagnetic waves with

Trapping effect

Linearly polarized, monochromatic plane wave

$$E = E_x \quad B = B_y \quad k = k_z$$

Not a harmonic oscillation!

$$\frac{d}{dt}(\gamma m_{\rm e}\vec{v}) = -e(\vec{E} + \frac{\vec{v}}{c} \times \vec{B})$$

$$\gamma_{
m max} \sim a^2$$

 $T_{
m particle} \sim a^2 T_{
m wave}$

Where is this wave?

For example, Around the termination shock of the pulsar wind nebulae

There can be the waves in the GRB jets (cf. McKinney & Uzdensky 2012)

Striped wind

Super Luminal Strong Waves (SLSW) should exist around the termination shock

Aim

Investigation the electron acceleration in superluminal waves (and radiation from these electrons)

Method

Numerical.

Analytically described waves and test particles (Lienard-Wiephert potentail for the radiation spectra)

Acceleration and radiation spectra

1. solve the equation of motion

$$\vec{v}_{\text{init}}$$
: isotropic $\frac{d}{dt}(\gamma m_{\text{e}}\vec{v}) = -e(\vec{E} + \frac{\vec{v}}{c} \times \vec{B})$

2. Calculate the radiation spectrum from the Lienard-Wiephert potential

$$\frac{dW}{d\omega d\Omega} = \frac{e^2}{4\pi c^2} \Big| \int_{-\infty}^{\infty} dt' \frac{\vec{n} \times \left[(\vec{n} - \vec{\beta}) \times \dot{\vec{\beta}} \right]}{(1 - \vec{\beta} \cdot \vec{n})^2} \exp\left\{ i\omega(t' - \frac{\vec{n} \cdot \vec{r}(t')}{c}) \right\} \Big|^2$$

 $ec{n}$ unit vector toward the observer t' retain

 t^\prime retarded time

Energy spectra $t = 3 \times 10^4 \omega_0^{-1}$

Results: particle acceleration $t = 3 \times 10^4 \omega_0^{-1}$

Discussion: Efficiency of acceleration

DSA Bohm limit

 $\Delta \gamma m c^2 \simeq \gamma_0 m c^2$ in gyro time $T_g = \frac{\gamma_0 m c}{e B}$

SLSW acceleration (strongly strapped)

Discussion: 2nd order acceleration?
transport equation

$$\frac{\partial f}{\partial t} = -\frac{1}{p^2} \frac{\partial}{\partial p} \left\{ p^2 \left[A(p)f - D(p) \frac{\partial f}{\partial p} \right] \right\} - \frac{f}{t_{esc}} + \frac{S}{4\pi p^2},$$
For resonant scattering, $D(p) \propto p^q$ q : power index of the turbulence
Non resonant scattering D does not depend on p
 $\frac{\partial f}{\partial t} = \frac{D}{p^2} \frac{\partial}{\partial p} \left(p^2 \frac{\partial f}{\partial p} \right)$ for $t \neq 0$

f is a Gaussian function.

 $\begin{array}{c} & & \\ \hline \end{array} \\ \hline \end{array} \\ \frac{dN}{d\gamma} \propto p^2 f \end{array} \\ \begin{array}{c} \text{power law with index 2} \\ + \text{exponential cutoff} \end{array} \end{array}$

Summary for particle acceleration

- We calculate the electron acceleration in superluminal strong waves and radiation from them.
- When the primary wave is dominant (or even comparable to the secondary waves), selective acceleration occurs. It form the power law energy distribution.
- This acceleration mechanism can play a crucial role for the injection to the shock acceleration (DSA) in the upstream of the termination shock.

Radiation

Results: Radiation spectra

 $e\varsigma_{\rm sec}$

0.1

Observation

from beaming effect

Summary

- We calculate the electron acceleration in superluminal strong waves and radiation from them
- When the primary wave is dominant, selective acceleration occurs. It can be important for the injection into DSA
- Radiation features are understood by considering the synchro-Compton & jitter radiation in the secondary waves.

End

Back up

Location

Termination shock

Striped wind

Estimation of a of entropy wave

$$L = \frac{c\vec{E}\times\vec{B}}{4\pi} 4\pi r^2$$

pure toroidal wind
$$E = \frac{vB}{c} \sim B$$

C

ω

isotropic approximation

$$B \propto r^{-1}$$

$$L = \frac{m^2 c^3 \omega^2 a^2 r^2}{e^2} \qquad r_{\rm LC} =$$

•
$$a = \frac{r_{\rm LC}}{r} \left(\frac{e^2 L}{m^2 c^5}\right)^{1/2}$$

~ $3.4 \times 10^{10} \left(\frac{r_{\rm LC}}{r}\right) \left(\frac{L}{10^{38} {\rm erg/s}}\right)^{1/2}$

Entropy wave in upstream

In upstream frame,

Entropy wave in downstream

$$\eta_{\rm down} = \lambda_{\rm sw} \sqrt{\frac{4\pi e^2}{mc}} \sqrt{\frac{\Gamma_{\rm d}^2 n_{\rm d}}{\gamma_{\rm th}}}$$

* $\gamma_{\rm th}$: thermal Lorentz factor

 $\frac{\eta_{\rm down}}{\eta_{\rm up}} = \sqrt{\frac{\Gamma_{\rm d}^2 n_{\rm d}}{\gamma_{\rm th} \Gamma_{\rm u}^2 n_{\rm u}}} \quad \begin{array}{l} {\rm Rankine-Hugoniot\ relation}\\ \Gamma_{\rm d} n_{\rm d} \sim \Gamma_{\rm u} n_{\rm u} \end{array}$ $=\frac{\sqrt{\Gamma_{\rm d}}}{\sqrt{\gamma_{\rm ll}\Gamma}}\qquad\Gamma_{\rm d}\sim 1$ kinetic energy dominant $\sim \frac{1}{\Gamma_{\rm u}}$ $\gamma_{\rm th} \sim \Gamma_{\rm u}$ $\eta_{\rm up} < O(10)$ & $\Gamma_{\rm u} > O(10^2)$: $\eta_{\rm down} \ll 1$

Energy in shock rest frame

Acceleration efficiency: weakly trapped population

random walk

one step
$$\delta E = amc^2$$
 $t = 1/\omega_{\min}$

For electrons accelerating by DSA, $\gamma_0 \gg a$

$$< E^2 >= E_0^2 + N(amc^2)^2 \qquad \& \quad N = \omega_0 T_g = \gamma_0/a$$
$$\longrightarrow \quad < \gamma^2 > -\gamma_0^2 = \gamma_0 a$$

Mean energy gain in gyro time

$$\Delta E \equiv (\langle \gamma^2 \rangle^{1/2} - \gamma_0) mc^2 = \frac{a}{2} mc^2 \ll \gamma_0 mc^2$$

SLSW acceleration is important only before cross the shock (upstream)

This acceleration can be important for injection into DSA

Condition for Maxwell distribution

- Distribution for some direction does not depend on the distribution for other direction
- Distribution does not change if we rotate the axes
- Distribution is a dependent only on the absolute of the momentum
- Total energy does not change
- Equipartition of energy
- Total energy does not conserved.
- However, other conditions are nearly achieved.

Thus, quasi Maxwellian can be realized

Radiation spectra for

 $e\varsigma_{\rm sec}/mc = 10^{-3}$

1-wave test calculation

1. A SLS wave with the approximation $v_{\rm ph} = c$

$$\begin{cases} E_x = E_0 \cos(\omega_{\rm sw} t - k_{\rm sw} z) \\ B_y = B_0 \cos(\omega_{\rm sw} t - k_{\rm sw} z) \end{cases} \text{ or } \begin{cases} E_x = -E_0 \cos(\omega_{\rm sw} t + k_{\rm sw} z) \\ B_y = B_0 \cos(\omega_{\rm sw} t - k_{\rm sw} z) \end{cases}$$

2. Inject an electron and solve the EOM $\vec{v}_{init} = (0, 0, v_z)$ $\frac{d}{dt}(\gamma m_e \vec{v}) = -e(\vec{E} + \frac{\vec{v}}{c} \times \vec{B})$

3、Calculate the radiation spectrum using Lienard-Wiechert potential

$$\frac{dW}{d\omega d\Omega} = \frac{e^2}{4\pi c^2} \Big| \int_{-\infty}^{\infty} dt' \frac{\vec{n} \times \left[(\vec{n} - \vec{\beta}) \times \dot{\vec{\beta}} \right]}{(1 - \vec{\beta} \cdot \vec{n})^2} \exp\left\{ i\omega(t' - \frac{\vec{n} \cdot \vec{r}(t')}{c}) \right\} \Big|^2$$

 $ec{n}$ unit vector toward the observer t' retarded time

Head-on collision

Interpretation of the peak frequency 2

$$\begin{split} \omega_{\text{peak}} &\sim \gamma_{\text{max}}^2 \frac{2\pi}{\tau} \\ &= (\gamma_{\text{init}} a^2)^2 \frac{K \omega_{\text{sw}}}{a^2 \gamma_{\text{init}}^2} = K a^2 \omega_{\text{sw}} = K \times 10 \lesssim 100 \\ & * K = O(1) \end{split}$$

$$\begin{split} & \mathsf{P}_{\text{eak frequency for rear-end}}_{\text{Peak frequency for head-on}} = \frac{K a^2 \omega_{\text{sw}}}{\gamma_{\text{init}}^2 \frac{eE_0}{mc}} = \frac{K a}{\gamma_{\text{init}}^2} \end{split}$$

Necessary condition for peak frequency is determined by ${\it Q}$

Crab flare as a jitter radiation of a SLSW

 $\gamma_{\rm max} \simeq 10^{10}$ \longrightarrow Maximum Lorentz factor by DSA $\lambda_{\rm SLSW} \sim 10^9 {\rm cm}$ in quiescent state $B = 10^{-4} {\rm G}$

$$\nu_{\rm jit} \simeq \gamma_{\rm max}^2 c / \lambda_{\rm SLSW} = 3 \times 10^{21} \text{Hz}$$
$$\nu_{\rm flare} = 10^{22 - 23} \text{Hz}$$

$$\lambda_{
m SLSW} < 10^8 {
m cm}$$
for $a < 1$

Peculiar cascading may invoke a flare

