Development of Silicon-based X-ray Transient Monitor onto a Microsat

Kanazawa University

Sawano Tatsuya,

Yonetoku Daisuke, Yoshida Kazuki, Toyanago Asuka,

Kagawa Yasuaki, Kawai Kentaro, Ina Masao, Endo Yu

Short gamma-ray bursts

Associated with the coalescence of

a binary system of compact objects(?)

What would be the keys to understanding of the progenitor?

- gravitational-wave transients coincident with Short GRBs
 - GW? → KAGRA, advanced LIGO, & advanced VIRGO (2018-)
 - GRB? Swift/BAT(Hard X-ray band), Fermi/GBM (wide band, wide FoV, but moderate localization), and ...

soft X-ray imager with wide FoV for a microsatellite platform

Event rate of SGRBs

Requirements for Detector

Extended Emission ($\propto E^{-2}$, 1~10 keV): Expected photon flux : 10⁻⁶ erg/cm² ~ 300 photon/cm²

Extended emission of nearby SGRBs is enough bright. We can observe them by small instruments with 100 cm².

Micro-satellite proposed from Kanazawa Univ. (Kanazawa-SAT³)

	Kanazawa-SAT ³
Orbit	LEO
Size	$50 \times 50 \times 50 \text{ cm}^3$
Weight	< 50 kg
Electric Power	8 W for payload
Telemetry & Command	S-band (downlink) UHF (uplink)

Detector will be installed on this side!

We plan to launch Kanazawa-SAT³ in 2018-2019!

© MEISEI Electric Co., Ltd.

Silicon Strip Detector(SSD)

Si strip sensor (Hamamatsu Photonics)

- 64 strips (0.3mm pitch)
- 0.5mm thickness (1~20 keV)
- Fan-out structure to connect ASIC
- Capacitance 5 ~ 10 pF each strip

Angular resolution $\theta = \tan^{-1}(d/D) = 10 \operatorname{arcmin}_{\text{for } d = 0.3 \text{mm}, D = 10 \text{cm}}$

Front-end ASIC "ALEX"

- 64-channel analog inputs
- very high gain of ~ 750 mV/fC
- **10-bit** Wilkinson-type ADCs
- Power consumption of ~ 120 mW

with the cooperation of Prof. Ikeda, Harayama-san (ISAS/JAXA) and Arimoto-san (Tokyo Tech.)

Imaging Exam. - Setup

Beamline at lab. of Kanazawa Univ.

- Mono-energy of 17.5 keV produced from molybdenum
- Source divergence ~ 20 arcmin.

Detector

X-ray generator

(40 kV, 300 μA)

- 64-strip silicon detector
- tungsten mask with a thickness of 50 μm
- Geometrical angular resolution of 5.7 arcmin.

Thermostatic bath (-10 °C)

Imaging Exam. - Results

Imaging Exam. - Results

Confirmed the position determination accuracy is consistent with the one determined by the geometric factor of 5.7 arcminutes.

Prototype Model

Summary

- To detect short GRBs associated with gravitational waves, we are developing a coded X-ray imaging detector consisting with a silicon strip sensor and a tungsten mask.
- We have developed an ASIC for readout of low energy X-rays and confirmed that the detector can measure X-rays from 2 keV to 20 keV.
- We performed the imaging test with a miniature camera system and confirmed the position determination accuracy is consistent with the one determined by the geometrical factor of 5.7 arcminutes.
- The prototype model for the Kanazawa-SAT³ is in development, which has a half geometrical area of the flight model, and these technology can be applied to the future HiZ-GUNDAM mission.