

Fermi view of Gamma-ray bursts

Masanori Ohno (Hiroshima Univ.) On behalf of the Fermi LAT/GBM collaboration

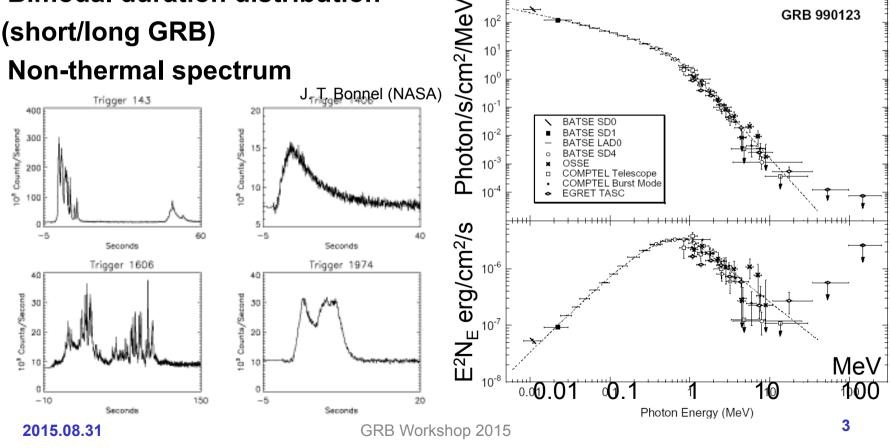
Introduction –GRBs and high energy gamma-rays

GRB observations by Fermi

- Fermi Gamma-ray Space Telescope
- onboard trigger and autonomous repoint observation
- Fermi GRB detection statistics

Fermi recent results

- highlights of Fermi-GBM (GBM 2nd Catalog)
- highlights of Fermi-LAT (LAT 1st Catalog)
 - temporally extended emission
 - delayed onset of high energy emission
 - highest energy photon and bulk Lorentz factor of GRB jet
- Future GRB observation by Fermi
- Summary 2015.08.31


Intense hard X-ray to gamma-ray emission discovered at the 60's

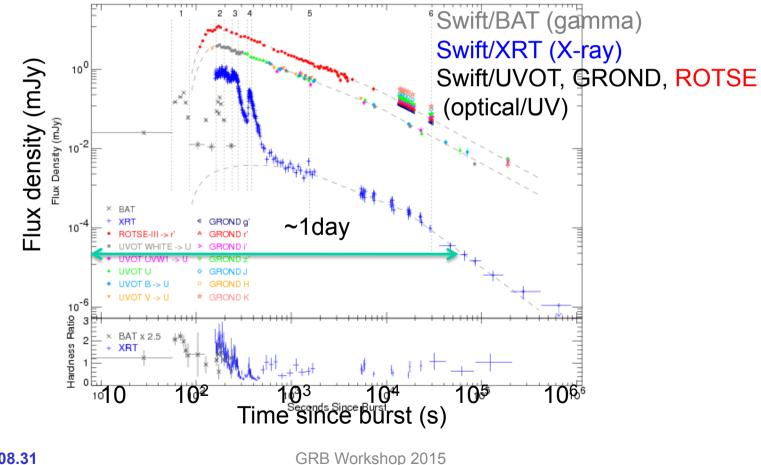
Event rate : 1-2 per day

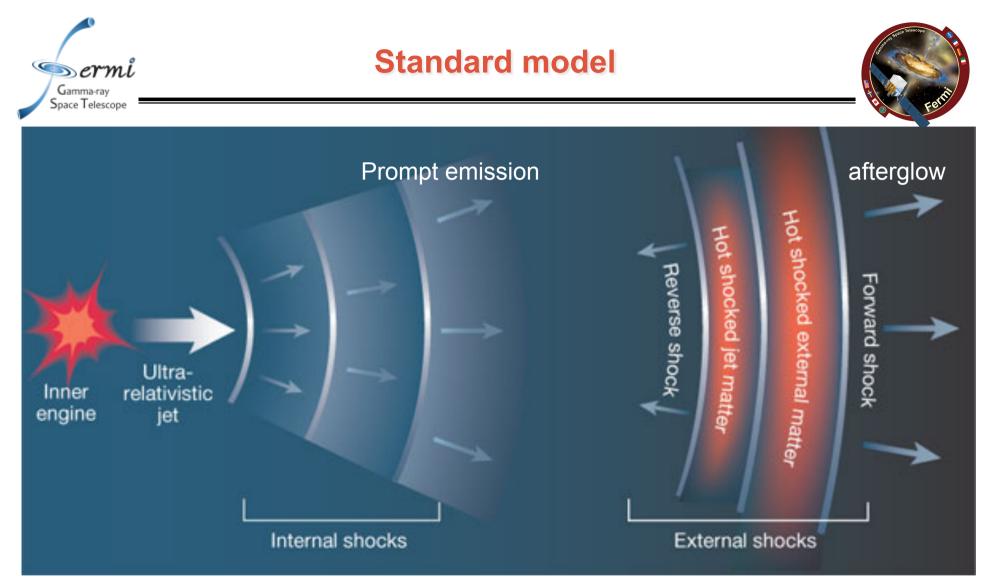
Dermi Gamma-ray

•

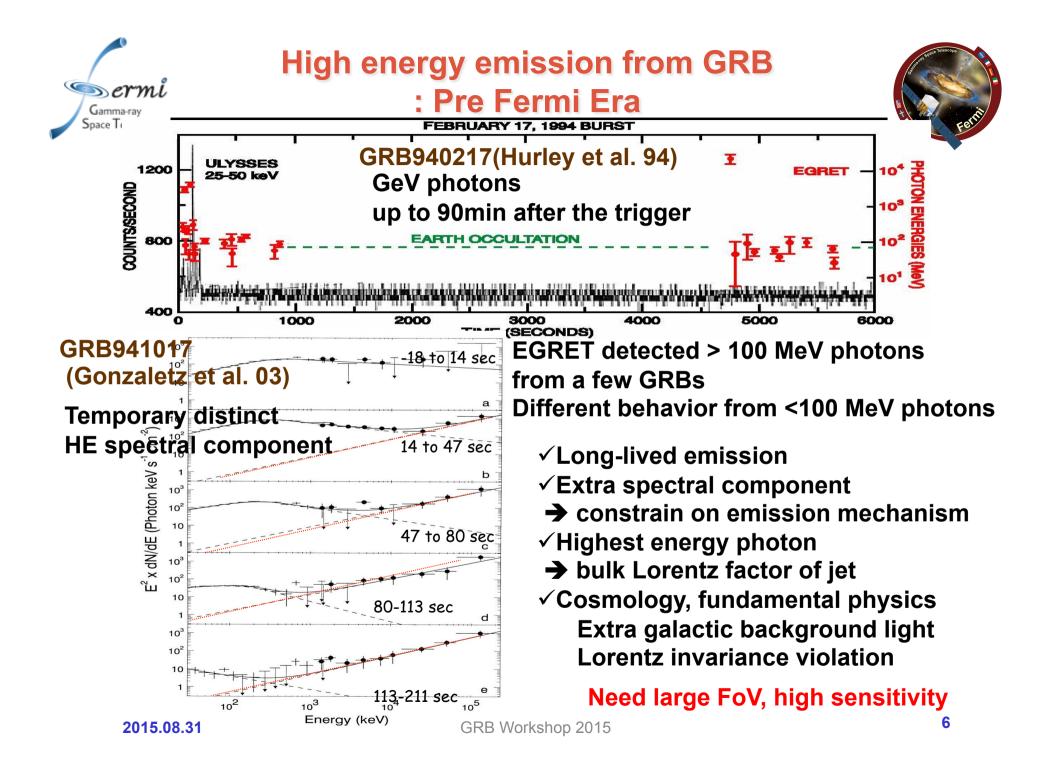
- Wide diversity in light curve (0.1-1000s duration)
- Cosmological distance (z~0.1-9)
- **Bimodal duration distribution** (short/long GRB)

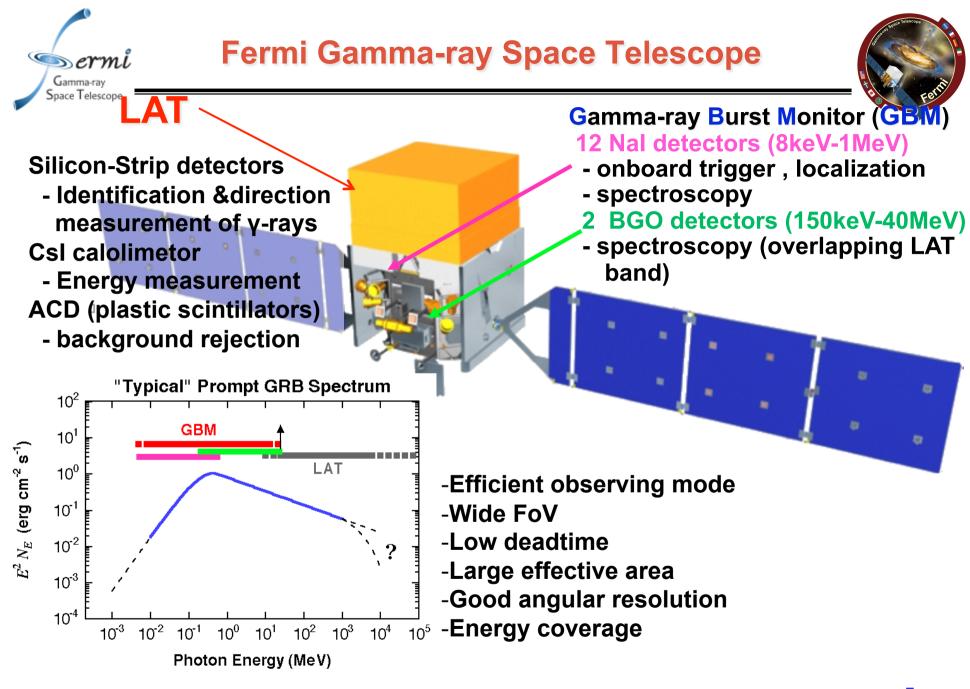
10

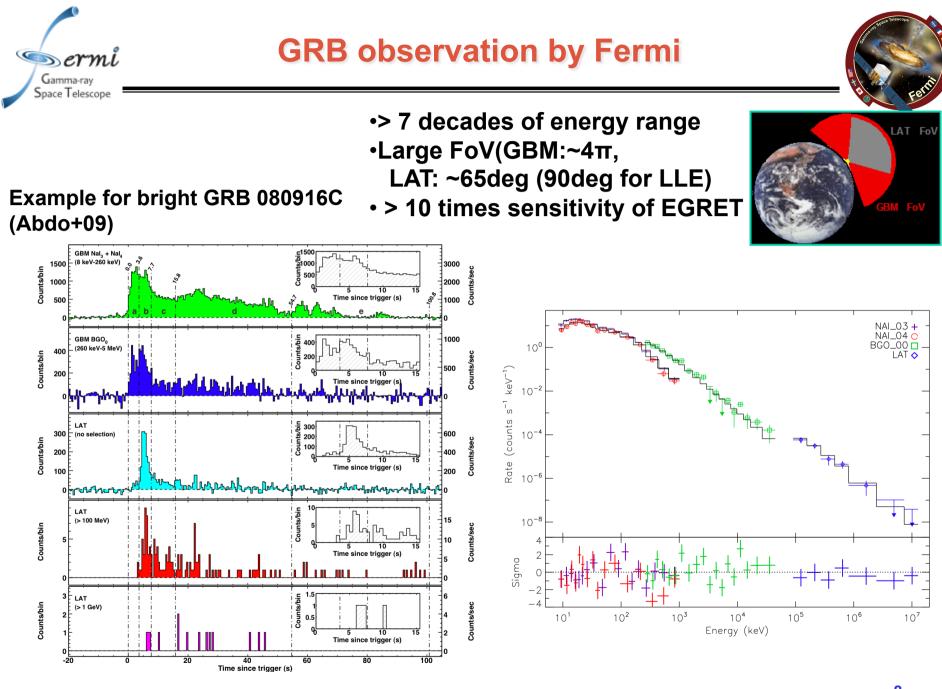

Briggs et al. 1999


GRB 990123

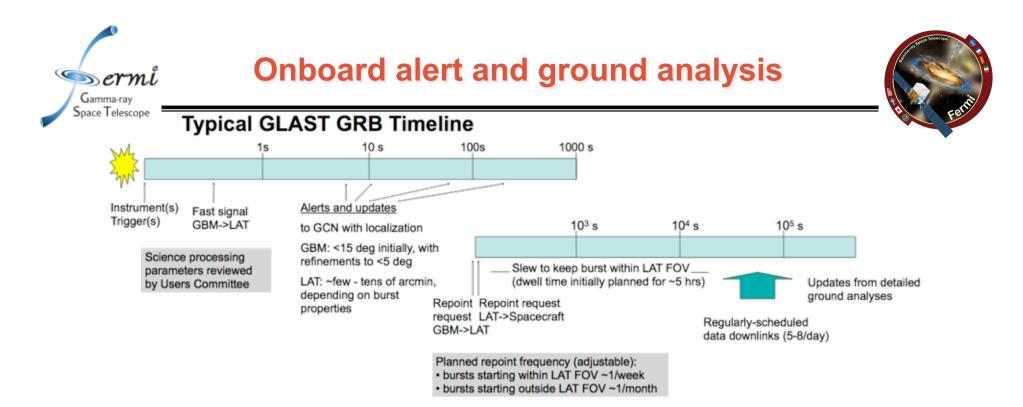
- After the spiky prompt emission, there is long-lived (~day) afterglow from radio to X-rays
- Late phase afterglow shows smooth light curve




• Still many unknown, unclear...


Piran 2003

emission mechanism of gamma-ray, jet formation, .. Etc

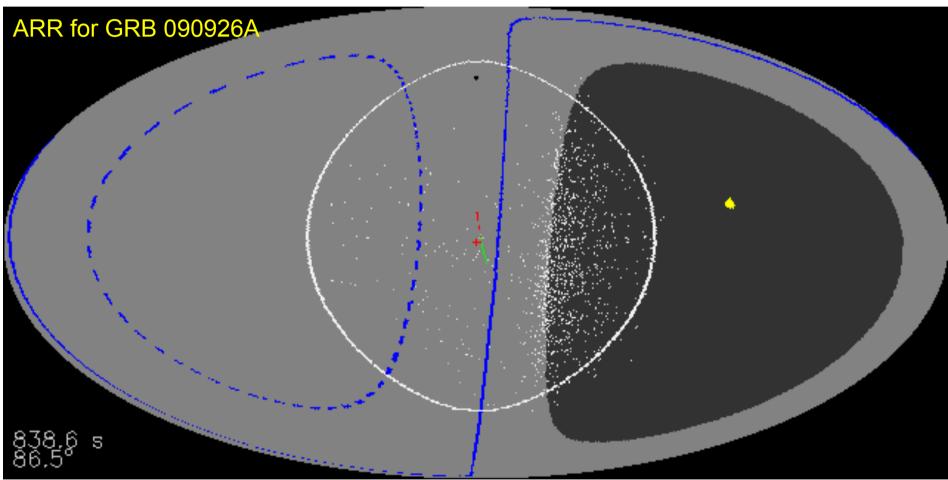

key observation: high-energy gamma-ray emission2015.08.31GRB Workshop 2015

GRB Workshop 2015

➢ GBM/LAT on-board processing (10—15 s):

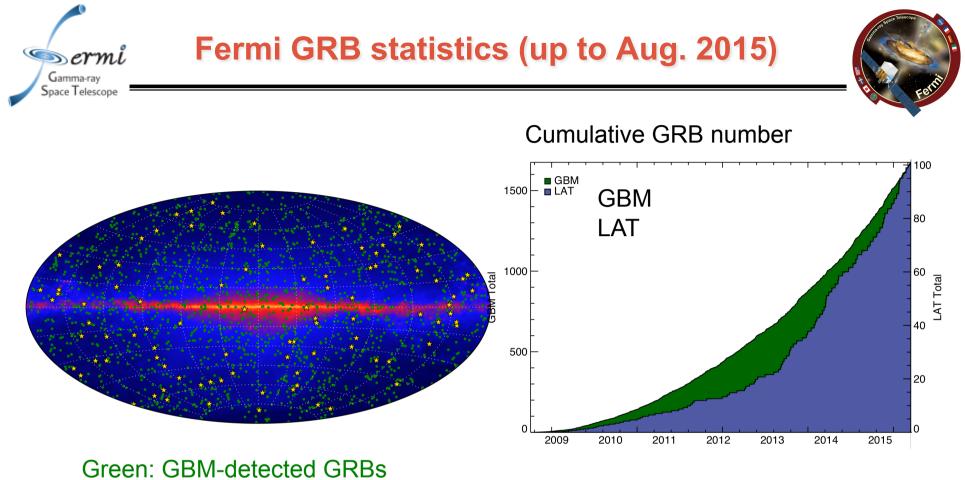
GCN alert within 10—15 s from the trigger time through TDRSS (alert, location). Now 2 s~ 150s windows are also used for on-board search We have few onboard triggers (GRB 090510, GRB 131108A)

LAT ground processing (a few hours after data downlink)


Final location, spectrum (1st circular).

Final location, high-energy flux and spectrum, afterglow search results (2nd circular). Data downlink may take > a half of day once ARR is triggered

Autonomous Repoint Request (ARR)

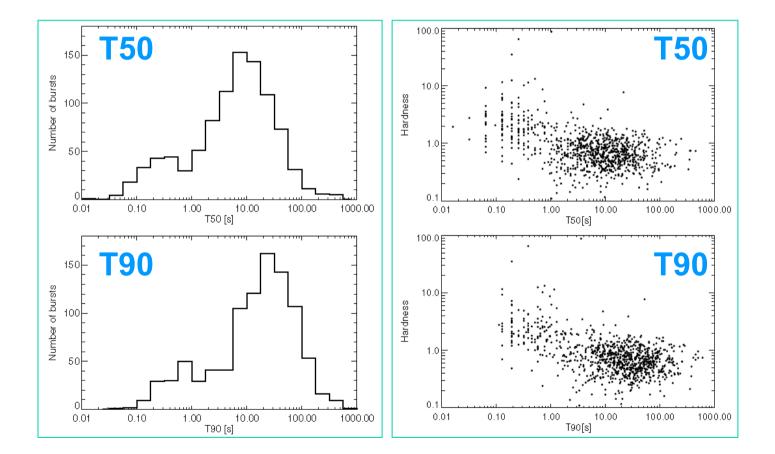


GBM FSW triggers Autonomous Repoint Request (ARR) S/C slew to the GBM position up to 2.5 hours subject to earth-limb constraint

ARR triggered for almost a half of LAT events → helpful for extended emission search

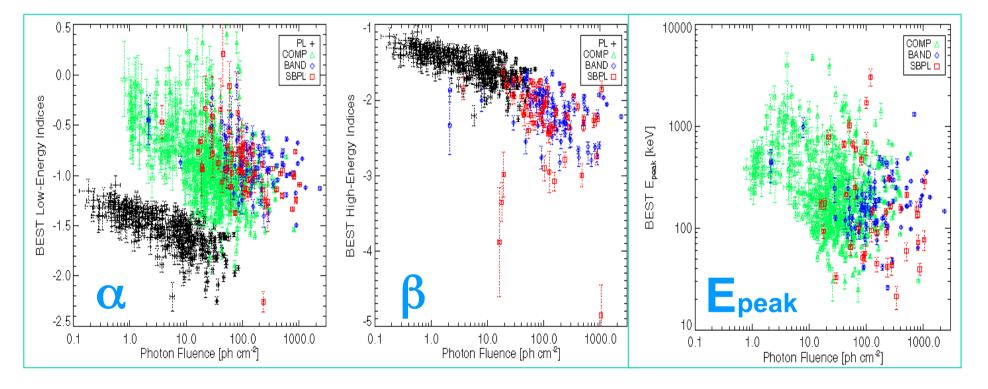
Samma-ray

Gold : LAT-detected GRBs


• GBM detections: ~250 GRBs / year (1700) , ~half in the LAT FoV

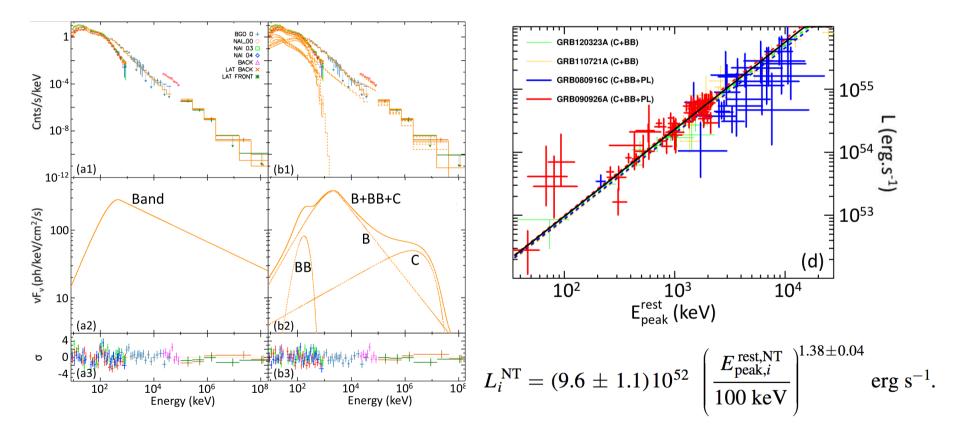
• LAT detections: ~15/year (102), ~8% of GBM detections

The second Fermi-GBM Gamma-ray Burst CATALOG: (von Kielin+14)



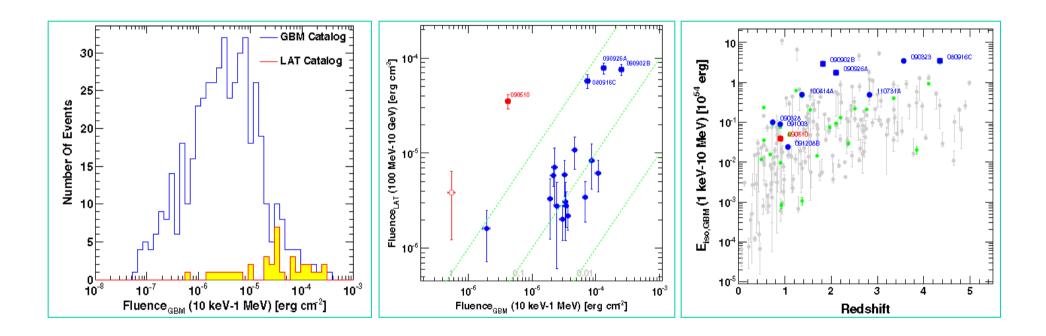
Differences can be seen between long/short GRBs

The second Fermi-GBM Gamma-ray Burst SPECTRAL CATALOG (Gruber+14)

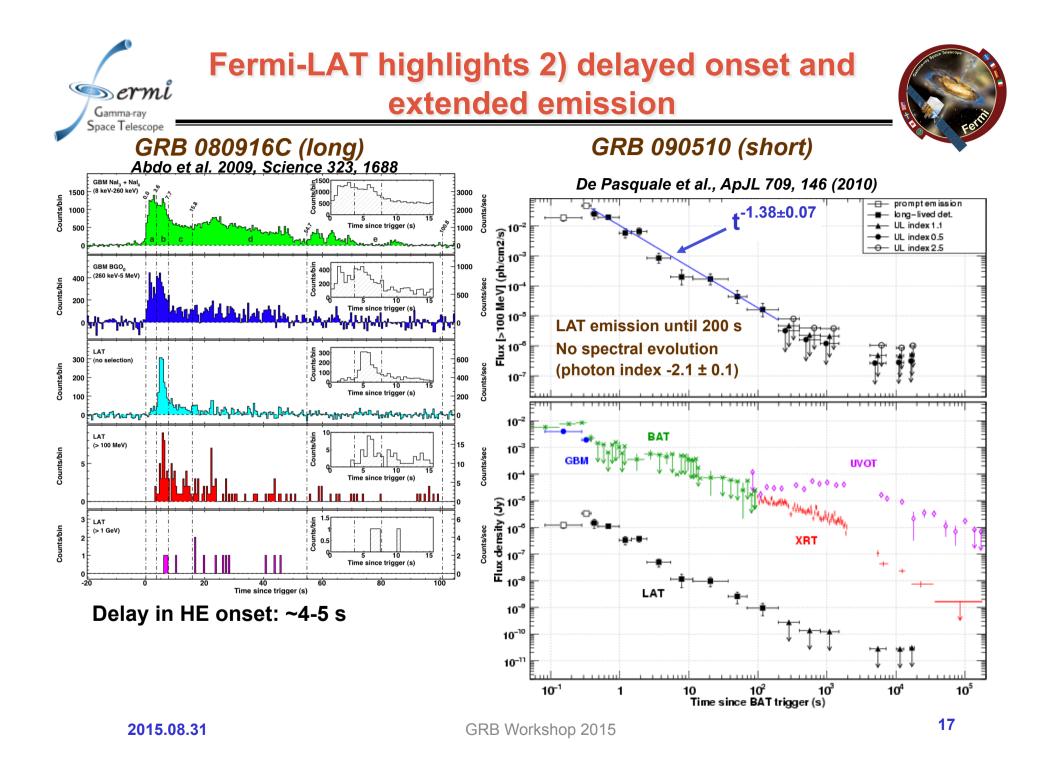


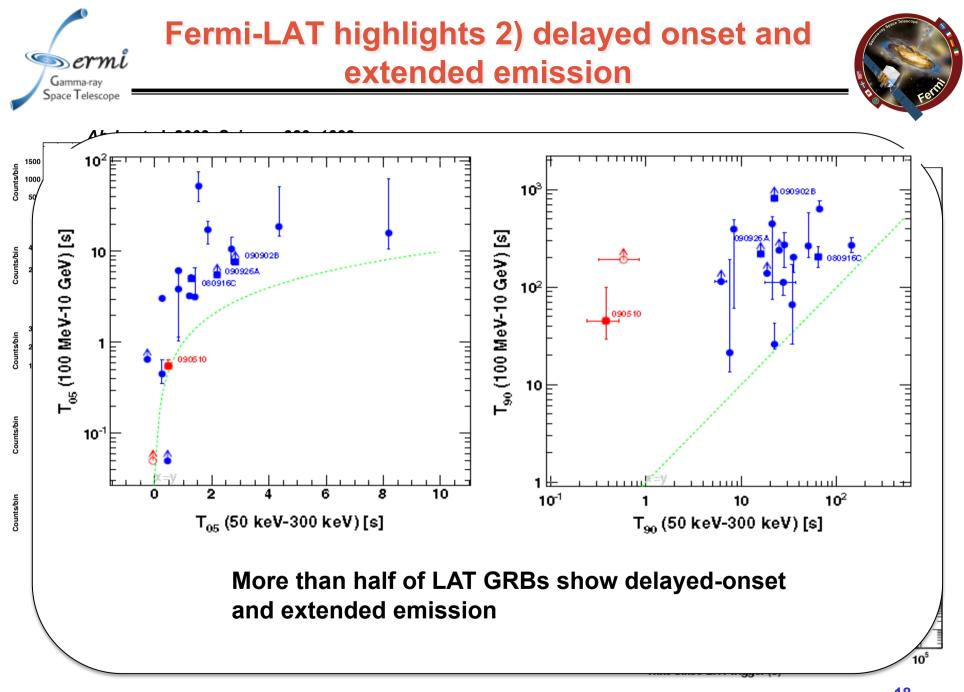
Systematic studies with large sample of Fermi-GBM detected GRBs

Non-thermal component gives an universal (e.g. short/long GRBs) E_{peak} -L_{iso} correlation (Guiriec+ 15)



- The FIRST Fermi-LAT Gamma-ray Burst CATALOG: (Ackermann+13)
- 35 LAT-detected GRBs are listed and systematically studied.


GRB Name	Date	GBM Trigger Time (METª)	R.A. Deg., J2000	Dæl. Dæg., J2000	θ Deg.	Loc. Err. ^b	Like.	LLE	Redshift	LAT GCN Number
080825C	2008 Aug 25-14:13:48.1	241366429.105	233.9	-4.5	60.3	0°757	1	0		8183
080916C	2008 Sep 16 00:12:45.6	243216766.614	1 19.85	-56.64	48.8	0."36*	1	1	4.35	8246
081006	2008 Oct 6 14:29:34.1	244996175.173	136.32	-62.05	11.0	0°527	1	0		
08 1024B	2008 Oct 24 21:22:40.8	246576161.864	322.95	21.2	18.7	0?227	1	1		8407
090217	2009 Feb 17 04:56:42.5	256539404.560	204.83	-8.42	34.5	0°.357	1	1		8903
090227B	2009 Feb 27 18:31:01.4	2574522.63.410	10.48	29.24	71.0	1°00∆	1	1		
090323	2009 Mar 23 00:02:42.6	259459364.630	190.71	17.053	57.2	0.36*	1	1	3.57	902.1
090328	2009 Mar 28 09:36:46.5	259925808.510	90.67	-41.715	64.6	0!72*	1	1	0.74	9044, 9077
090510	2009 May 10 00:22:59.9	263607781.971	333.55	-2.6.5.83	13.6	1//44 *	1	1	0.90	9334, 9350
090531B	2009 May 31 18:35:56.4	265487758.490	252.07	-36.015	21.9	2/10*	0	1		
090626	2009 Jun 2604:32:08.8	267683530.880	170.03	-33.49	18.3	09227	1	0		9584
090720B	2009 Jul 20 17:02:56.9	269802178.905	202.99	-54.21	56.1	09337	1	0		
090902B	2009 Sep 2 11:05:08.3	27 35 8 23 10. 31 3	264.94	27.324	50.8	3%60*	1	1	1.82	9867,9872
090926A	2009 Sep 26 04:20:26.9	275631628.990	353.4	-66.32	48.1	0/60*	1	1	2.11	9934, 9972
091003	2009 Oct 3 04:35:45.5	27 6237347.585	251.52	36.625	12.3	1//80*	1	0	0.90	9985
091031	2009 Oct 31 12:00:28.8	27 868 32 30, 850	71.49	-57.65	23.9	09237	1	1		10163
091208B	2009 Dec 8 09:49:57.9	28 195 85 99.956	29.392	16.89	55.6	1//80*	1	0	1.06	
100116A	2010 Jan 16 21: 31:00.2	2853702.62.240	305.01	14.43	26.6	0° 177	1	1		10333
100225A	2010 Feb 25 02:45:31.1	288758733.147	310.3	-59.4	55.5	3°13†	0	1		10450
100325A	2010 Mar 25 06:36:08.0	291191770.020	330.24	-26.45	7.1	09.607	1	0		10548
1004 14A	2010 Apr 14 02:20:21.9	292904423.990	192.11	8.693	69.0	1//80*	1	0	1.37	10594
100620A	2010 Jun 2002:51:29.1	298695091.100	86.9	-50.91	24.3	0°717	1	0		
100724B	2010 Jul 24 00:42:05.9	301624927.980	1 19.89	76.55	48.9	09887	1	1		10978
100728A	2010 Jul 28 02:17:30.6	30 197 62 52, 610	88.758	-15.255	59.9	0."36*	1	0		
100826A	2010 Aug 26 22:58:22.8	30455 6304, 898	279.593	-22.128	73.3	1°20∆	0	1		11155
101014A	2010 Oct 14 04:11:52.6	308722314.620	27.206	-50.819	54.0	190†	0	1		11349
101123A	2010 Nov 2322:51:34.9	312245496.973	135,16	1.91	78.2	3°16†	0	1		
110120A	2011 Jan 20 15:59:39.2	317231981.230	61.5	-12.0	13.6	09367	1	0		11597
110328B	2011 Mar 28 12:29:19.1	323008161.194	121.06	45.84	31.7	3°23†	0	1		11835
110428A	2011 Apr 28 09:18:30.4	325675112.410	5.59	64.849	34.6	0.04*	1	ō		1 1982
110529A	2011 May 29 00:48:42.8	328322924.872	118.33	67.91	30.0	3935†	ō	1		12044
110625A	2011 Jun 25 21:08:18.2	33072.8900.236	286.73	6,755	87.9	0.36*	1	ō		12097, 12100
110709A	2011 Jul 9 15:24:27.4	331917869.400	2.38.895	40.918	53.4	1.08*	1	ŏ		
110721A	2011 Jul 21 04:47:43.7	332916465.760	333.2	-38.5	40.7	0.204	1	ĩ		12188
110731A	2011 Jul 31 11:09:29.9	333803371.954	280.504	-28.537	3.4	0/36*	1	1	2.83	12218



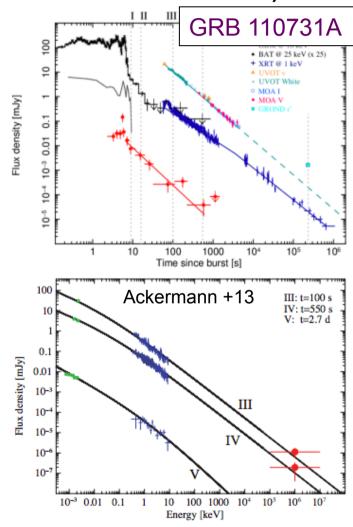
- The FIRST Fermi-LAT Gamma-ray Burst CATALOG: (Ackermann+13)
- 35 LAT-detected GRBs are listed and systematically studied

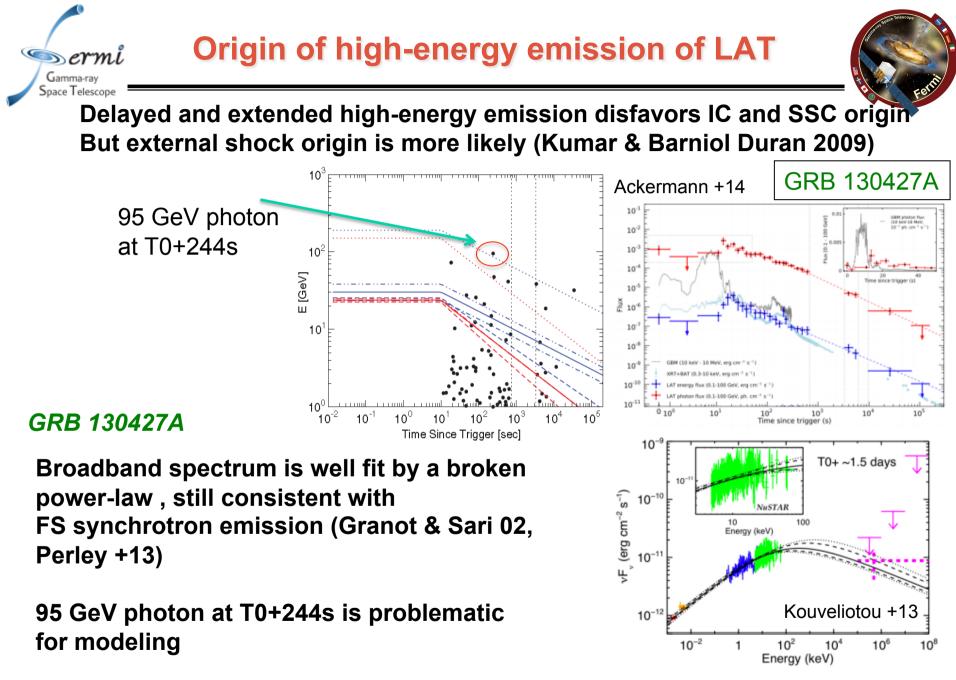
LAT-detected GRBs are typically brightest GBM bursts

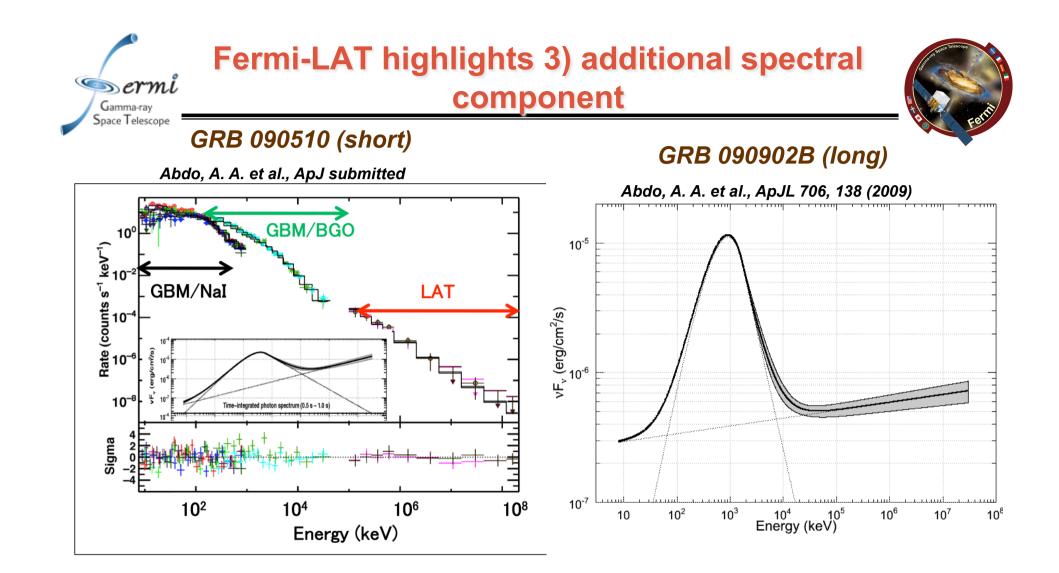
Delayed and extended high-energy emission disfavors IC and SSC origin But external shock origin is more likely (Kumar & Barniol Duran 2009)

GRB 110731A

Gamma-ray Space Telescope


Swift-XRT and many optical observations (Swift-UVOT, GROND, and MOA) are available


Broadband spectrum is well fit by a single power-law spanning 10 orders of magnitude in energy


GRB 130427A

Broadband spectrum is well fit by a broken power-law, still consistent with FS synchrotron emission (Granot & Sari 02, Perley +13)

95 GeV photon at T0+244s is problematic for modeling

Some bright LAT GRBs show deviations from typical Band function In high energy band

Fermi-LAT catalog –the Band crisis?

θ (deg)

48.9

50.8 48.1 48.8

57.2 59.9 69.0

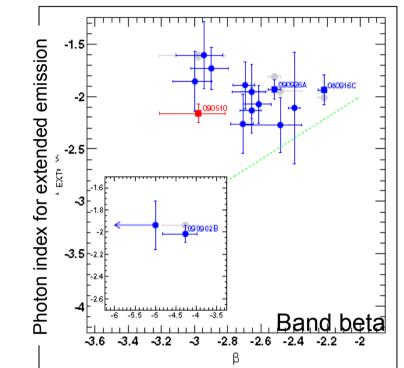
18.3

40.3 64.6

26.6 53.4

60.3

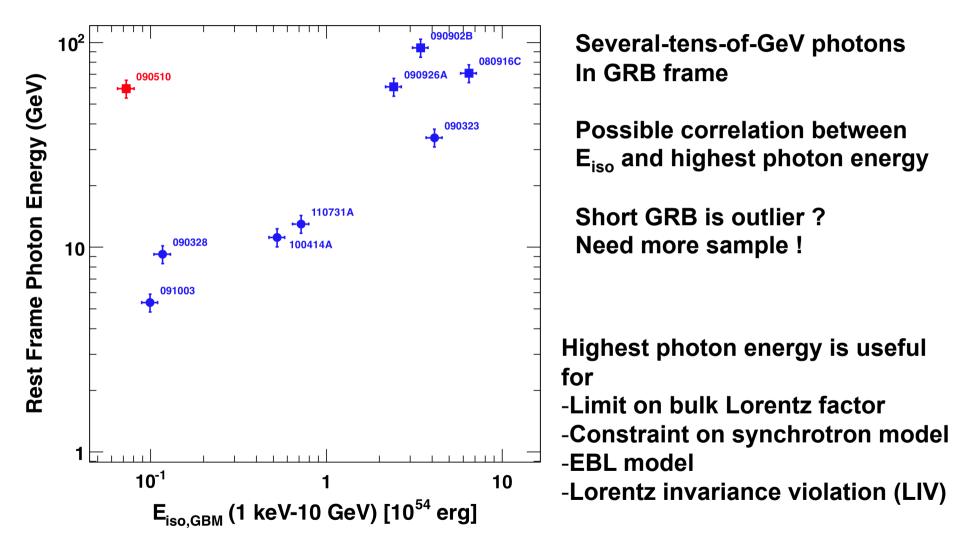
34.5 21.3 13.6


31.7

3.4

13.6

23.9


GRB Name	Fluence	Best Model	
GRB Name	10 keV-10 GeV	nest model	
	(10 ⁻⁷ erg cm ⁻²)		
100724B	4665-76	Band with exponential cutoff	
090902B	4058-24	Comptonized + power law	
090926A	2225-48	Band + power law with exponential cutoff	
080916C	1795-39	Band + power law	
090323	1528-44	Band	
100728A	1293_{+28}^{-27}	Comptonized	
100414A	1098 ⁻²⁷ +35	Comptonized + power law	
090626	927 ⁻¹⁶ 927	Logarithmic parabola	
110721A	876 ⁻²⁸ +28	Logarithmic parabola	
090328	817 ⁻³³ +34	Band	
100116A	638 ⁻²⁵ +26	Band	
110709A	518 ⁻²⁷ +28	Band	
080825C	517-20	Band	
090217	512 ⁻¹⁵ 512 ⁺¹⁶	Band	
091003	461_{+15}^{-14}	Band	
110120A	422_{+23}^{-22}	Band	
110328B	417_{+47}^{-37}	Comptonized	
110731A	379-21	Band + power law	
090510	360+18	Band + power law	
091031	288 ⁻¹⁰	Band	
110428A	255 ⁻⁹ +10	Band •Son	ne
090720B	185^{-11}_{+13}	Band	
100225A	101^{-7}_{+7}	Band typi	са
091208B	93 ⁻¹¹ 93 ⁺¹³	Band	
100620A	84 ⁻⁹	Band	
081006	56-9 +10	Band •LAT	' hi
110529A	49 ⁻⁶	Band	
100325A	46-4	Band Sing	jie
090531B	38 ⁻⁵	Comptonized pha	60
081024B	30 ⁻⁵	Band	36

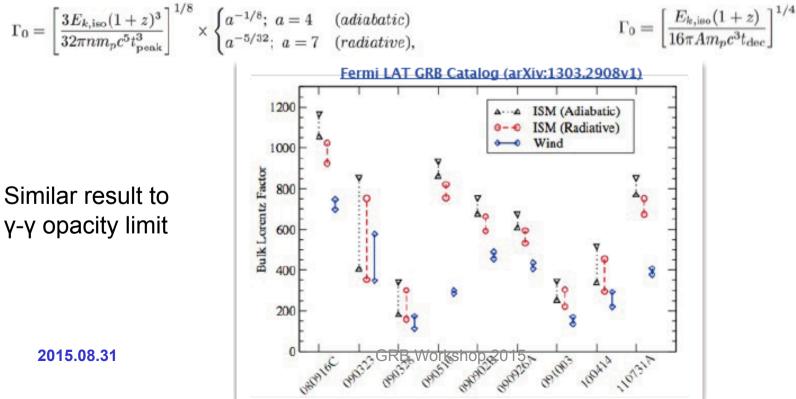
•Some bright LAT GRBs show deviations from typical Band function in high energy band

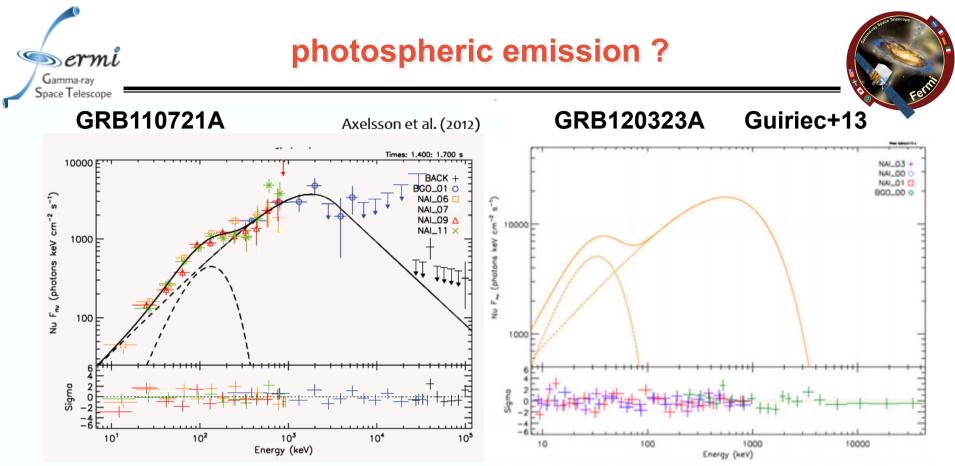
•LAT high-energy photon is dominated by single PL component of extended emission phase

Fermi-LAT highlights 4) highest energy photon

Due to large luminosity and small emitting region, optical depth for the γ - γ -> e+e- pair production is too large to observe the non-thermal emission from GRB \rightarrow compactness problem.

Relativistic motion (Γ >>1) could avoid this compactness problem

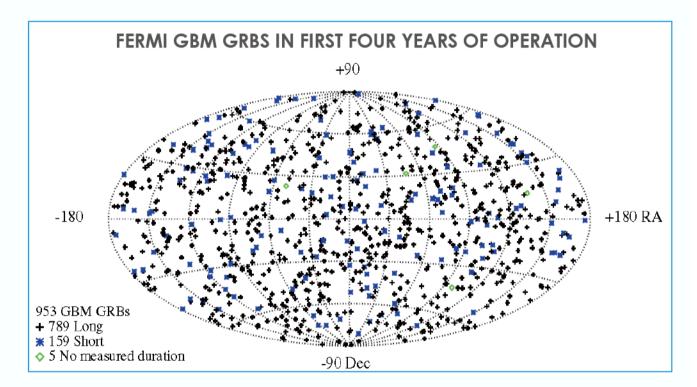

Fermi-LAT highlights 4) highest energy photon



- In the context of the early afterglow model, the delayed LAT onset is due to the transition between the coasting fireball and the self similar phase (Blandford & McKee 1976, Rees & Meszaros 1994)
- Peak-flux time of the LAT is of the order of the fireball deceleration time

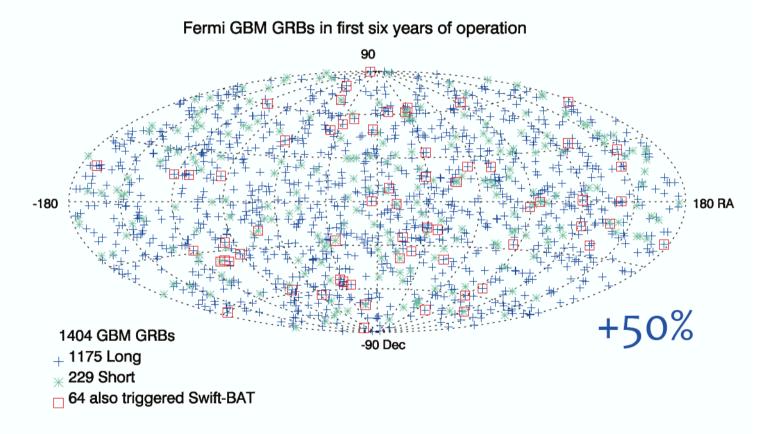
ISM [Blandford & McKee 1976; Sari et al. 1998; Ghisellini et al. 2010)]

Wind environment $[10^{-5}\,M\odot~yr^{-1}$ mass-loss rate, $10^3\,km\,s^{-1}$ [Chevalier & Li 2000; Panaitescu & Kumar 2000]



- Several GRBs also show the evidence of an extra component at low energy (>3 σ for GRB120323A, >5 σ for GRB110721A)
- Signature of photospheric emission ?
- Artifact due to spectral evolution of single spectrum ? (Burgess & Ryde 2015)
- Further emission mechanism in addition to the BB is required ? (Burgess, Ryde & Yu 2015)

Towards to the Fermi-GBM 3rd Catalog



Will be completed within a few months.

Towards to the Fermi-GBM 3rd Catalog

Will be completed within a few months.

Towards to the Fermi-LAT 2nd Catalog

Pass8 : A new low-level analysis and event reconstruction was developed during the past years. Data are available since June 24th

- improved effective area (100 % improvement below 100 MeV, 25% above 1GeV)
- better PSF and localization accuracy
- better background rejection
- reduction in systematic effect

Fermi-LAT 2nd Catalog will contain more than 100 LAT-detected GRBs (We have already >100 LAT bursts ! : Vianello & Omodei arXiv:1502.03122)

	rmi nce Sup	oport Ce								11		6 h		
Fermi	LAT (GRBs	htt	ip://fe	rmi.g	sfc.n	asa.g	jov/ss	sc/ob	serva	ation	s/type	es/grb	s/lat_
Important T	able Inform	ation:												
All analysis results presented here are preliminary and are not intended as an official catalog of Fermi-LAT detected GRBs. Please consult the table's caveat page for analysis details and other important informatic														
Fermi SSC Home » LAT GRBs														
GRB	GCN Name	MET	Date (UTC)	Time (UT)	RA (Degrees)	Dec (Degrees)	Error (Degrees)	Source	Theta (Degrees)	Zenith (Degrees)	LLE Detection	Likelihood Detection	LLE Significance	Likelihood TS
150724782	150724B	459456340.71	2015-07-24	18:45:36.71	351.92	3.67	0.3	Fermi-GBM	58.462	68.550	NO	YES	2.27	25.44
150702998	150702A	457574201.55	2015-07-02	23:56:37.55	52.78	-57.0	0.36	Fermi-LAT	117.60	88.222	NO	YES	-	31
150627183	150627A	457071806.0	2015-06-27	04:23:23	117.4706	-51.4900	9.72e-4	Fermi-GBM	74.373	97.351	YES	YES	8.48	174.67
150523396	150523A	454066191.08	2015-05-23	09:29:48.08	115.2859	-45.4209	0.001	Swift-XRT	25.741	55.489	YES	YES	6.78	207.83
150514774	150514A	453321308.35	2015-05-14	18:35:05.35	74.8750	-60.9691	1.1E-3	Swift-XRT	38.488	58.304	NO	YES	3.31	33.93
150513855	150513A	453241882.73	2015-05-13	20:31:19.73	49.044	-22.868	0.0167	Swift-BAT	50.679	11.149	YES	YES	4.72	29.83

- Fermi satellite is now observing GRBs normally
- Fermi-GBM detects more than 1000 GRBs
 - many statistical properties of GRBs have been studied
- Fermi-LAT detects more than 100 GRBs
- Discussed statistical properties of LAT GRBs in catalog paper
- delayed onset/extended high-energy emission
- additional spectral component
- highest energy photons..etc
- Next catalog papers (GBM:3rd/LAT:2nd) is under production
- large sample number of GBM-detected GRBs
- >100 LAT-detected GRBs will be contained
- new analysis result with PASS8 will be summarized